MATH 2050B 2017-18 Mathematical Analysis I Tutorial Notes Ng Hoi Dong

1 The Real Numbers

1.1 Axioms of Real Numbers

(A1) $a + b = b + a$, $\forall a, b \in \mathbb{R}$,

 $(A2)$ $(a + b) + c = (a + (b + c)), \forall a, b, c \in \mathbb{R},$

- **(A3)** ∃ 0 ∈ ℝ, s.t. 0 + $a = a = a + 0 \forall a \in \mathbb{R}$,
- **(A4)** ∀ $a \in \mathbb{R}, \exists b \in \mathbb{R}, \text{ s.t. } a + b = 0 = b + a$. Then we denote this b as $-a$,
- **(M1)** $a \cdot b = b \cdot a \forall a, b \in \mathbb{R}$.
- $(\mathbf{M2})$ $(a \cdot b) \cdot c = a \cdot (b \cdot c) \forall a, b, c \in \mathbb{R},$
- **(M3)** ∃ 1 ∈ ℝ, s.t. $1 \cdot a = a = a \cdot 1 \forall a \in \mathbb{R}$,
- **(M4)** $\forall a \in \mathbb{R} \setminus \{0\}, \exists b \in \mathbb{R}, \text{ s.t. } a \cdot b = 1 = b \cdot a$. Then we denote this *b* as $\frac{1}{a}$ $\frac{1}{a}$,
- **(D1)** $a \cdot (b + c) = a \cdot b + a \cdot c \forall a, b, c \in \mathbb{R}$,
- **(D2)** 0 ≠ 1,
- **(O1)** Given $a, b \in \mathbb{R}$, there are one and the only one of the following case will occur:
	- \bullet *a* = *b* \bullet *a* < *b* \bullet *a* > *b*
- **(O2)** if $a > b$ for some $a, b \in \mathbb{R}$, then $a + c > b + c \forall c \in \mathbb{R}$,
- **(O3)** if $a > b$ for some $a, b \in \mathbb{R}$, then $ac > bc \forall c > 0$,
- **(O4)** if $a > b$ and $b > c$ for some $a, b, c \in \mathbb{R}$, then $a > c$.

(Completeness) Every bounded above nonempty subset in ℝ has a Supremum in ℝ.

1.2 Properties of Real Numbers

- **(i)** 0, 1 are unique, $-a$ is unique for each $a \in \mathbb{R}$, $\frac{1}{a}$ $\frac{1}{a}$ is unique for each $a \in \mathbb{R} \setminus \{0\},\$
- **(ii)** if $a + c = b + c$ for some $a, b, c \in \mathbb{R}$, then $a = b$.
- **(iii)** $a \cdot 0 = 0 \forall a \in \mathbb{R}$,
- $(iv) -a = (-1) \cdot a \forall a \in \mathbb{R},$
- $(v) -(-a) = a \forall a \in \mathbb{R}$,
- (vi) $(-a)(-b) = a \cdot b \forall a, b \in \mathbb{R},$
- (vii) if $a > b$ for some $a, b \in \mathbb{R}$, then $-a < -b$,
- **(viii)** if $a > b$ for some $a, b \in \mathbb{R}$, then $ca < cb \forall c < 0$,
	- $(\mathbf{ix}) \ \ a^2 := a \cdot a > 0 \ \forall \ a \in \mathbb{R} \setminus \{0\}.$
	- (x) 1 > 0.
- (xi) 2 > 1 > $\frac{1}{2}$ $\frac{1}{2} > 0$,
- **(xii)** if $a \in \mathbb{R}$ satisfies $0 \le a < \varepsilon \ \forall \ \varepsilon > 0$, then $a = 0$.

Proof

- (i) Suppose $0' \in \mathbb{R}$ also satisfies (A3), then by (A3) of 0 and 0', we have $0 = 0 + 0' = 0'$. The other cases are similar, so I left them as exercise.
- **(ii)** Note that

$$
a \stackrel{(A3)}{=} a + 0
$$

\n
$$
\stackrel{(A4)}{=} a + [c + (-c)]
$$

\n
$$
\stackrel{(A2)}{=} (a + c) + (-c)
$$

\nassumption
\n
$$
\stackrel{(A2)}{=} b + [c + (-c)]
$$

\n
$$
\stackrel{(A4)}{=} b + 0
$$

\n
$$
\stackrel{(A3)}{=} b.
$$

(iii) Note that $0 + a \cdot 0 \stackrel{(A3)}{=} a \cdot 0 \stackrel{(A3)}{=} a \cdot (0 + 0) \stackrel{(D1)}{=} a \cdot 0 + a \cdot 0$, by (ii), we have $a \cdot 0 = 0$.

(iv) Note that

$$
(-1) \cdot a \stackrel{(A3)}{=} (-1) \cdot a + 0
$$

\n
$$
\stackrel{(A4),(A2)}{=} [(-1) \cdot a + a] + (-a)
$$

\n
$$
\stackrel{(M3)}{=} [(-1) \cdot a + 1 \cdot a] + (-a)
$$

\n
$$
\stackrel{(D1)}{=} (-1 + 1) \cdot a + (-a)
$$

\n
$$
\stackrel{(A4)}{=} 0 \cdot a + (-a)
$$

\n
$$
\stackrel{(iii)}{=} 0 + (-a)
$$

\n
$$
\stackrel{(A3)}{=} -a
$$

(v) By (A4), $a + (-a) = 0 = (-a) + a$, since $-(-a)$ is unique by (i), we have $-(-a) = a$ by (A4).

(vi) Note that

$$
(-a)(-b) \stackrel{\text{(iv)}}{=} [(-1) \cdot a] [(-1) \cdot b]
$$

\n
$$
\stackrel{(M1),(M2)}{=} [(-1) \cdot (-1)] (a \cdot b)
$$

\n
$$
\stackrel{\text{(iv)}}{=} [-(-1)] (a \cdot b)
$$

\n
$$
\stackrel{\text{(v)}}{=} 1 \cdot (a \cdot b)
$$

\n
$$
\stackrel{(M3)}{=} a \cdot b
$$

(vii) Note that

$$
a > b
$$

\n
$$
0 \stackrel{(A4)}{=} a + (-a) \stackrel{(O2)}{>} b + (-a) \stackrel{(A1)}{=} -a + b
$$

\n
$$
-b \stackrel{(A3)}{=} 0 + (-b) \stackrel{(O2)}{>} (-a + b) + (-b) \stackrel{(A2),(A4)}{=} -a + 0 \stackrel{(A3)}{=} -a
$$

(viii) Fixed any $c < 0$, by (vii), $-c > 0$. Hence, $-ca > -cb$ by (O3), so $ca < cb$ by (vii) and (v).

(ix) By (O1), there are two cases:

(Case 1) Suppose $a > 0$, then $a^2 \overset{(O3)}{>} a \cdot 0 \overset{(iii)}{=} 0$.

(Case 2) Suppose $a < 0$, then $a^2 \ge a \cdot 0 = 0$.

(x) Suppose it were not true that $1 > 0$, By (O1) and (D2), we have $1 < 0$. By (M3), (vi), (ix), we have $1 = 1 \cdot 1 = (-1)^2 > 0$, which contradict with $1 < 0$ by (O1). Therefore, $1 > 0$.

(xii) Note that $2 := 1 + 1 \overset{(O2),(x)}{>} 1 + 0 \overset{(A3)}{=} 1$. Hence, $2 > 0$ by (O4). So 1 $\frac{(M4)}{9}$ $\frac{1}{2}$ $\frac{1}{2} \cdot 2 \overset{(O3)}{>} \frac{1}{2}$ $\frac{1}{2} \cdot 1 \stackrel{(M3)}{=} \frac{1}{2}$ $\frac{1}{2}$. Suppose it were not true that $\frac{1}{2} > 0$. By (O1), there are two cases: (Case 1) Suppose $\frac{1}{2} = 0$, then $1 \stackrel{(A4)}{=} 2 \cdot \frac{1}{2}$ 2 (iii) = 0, which contradict with (D2). (Case 2) Suppose $\frac{1}{2} < 0$, then $1 \stackrel{(A4)}{=} 2 \cdot \frac{1}{2}$ 2 $\overset{(O3)}{<} 2 \cdot 0 \overset{(iii)}{=} 0$, which contradict with (x) and (O1). Hence, $\frac{1}{2} > 0$.

(xii) Suppose it were true that $a \neq 0$, by (O1) and assumption, $a > 0$,

Then, $a \stackrel{(M3)}{=} a \cdot 1 \stackrel{(xi),(O3)}{>} a \cdot \frac{1}{2}$ 2 \Rightarrow 0, which contradict with the assumption if $\varepsilon = a \cdot \frac{1}{2}$ $\frac{1}{2}$. Hence, $a = 0$.

1.3 Bernoulli's Inequality

If $x > -1$, then $(1 + x)^n \ge 1 + nx$ for any $n \in \mathbb{N}$.

Proof

Use Induction on *n*, it is obvious when $n = 1$.

Suppose the inequality holds for some $n = k \in \mathbb{N}$, i.e. $(1 + x)^k \ge 1 + kx$. Then

$$
(1+x)^{k+1} = (1+x)(1+x)^k
$$

\n
$$
\ge (1+x)(1+ kx)
$$

\n
$$
= 1 + kx + x + kx^2
$$

\n
$$
\ge 1 + (k+1)x
$$

\nBy Induction Hypothesis
\nsince $x^2 \ge 0$,

the statement is true when $n = k + 1$,

by principal of M.I., $(1 + x)^n \ge 1 + nx \,\forall n \in \mathbb{N}$.

Remark

With similar skill, we have if $x > -1$, then $(1 + x)^n \ge 1 + nx + \frac{1}{2}$ $\frac{1}{2}n(n-1)x^2$ for any $n \in \mathbb{N}$ with $n \ge 2$.

1.4 Bounded Above and Below, Sup and Inf, Max and Min

1.4.1 Definition

Let $\emptyset \neq S \subset \mathbb{R}$. Then

(i) *S* is said to be bounded above (below resp.) if $\exists u \in \mathbb{R}$, s.t. $s \le u \forall s \in S$ ($s \ge u \forall s \in S$ resp.). In this case, *u* is called an upper (lower resp.) bound of *S*.

Also, *S* is said to be bounded if *S* is both bounded above and below.

- **(ii)** Suppose *S* bounded above, $u \in \mathbb{R}$ is said to be a supremum of *S*, or we denote *u* as Sup*S* if
	- (a) *is an upper bound of* S *,*
	- **(b)** if *v* is another upper bound of *S*, then $v \ge u$.
- **(iii)** Suppose *S* bounded below, $l \in \mathbb{R}$ is said to be an infimum of *S*, or we denote *l* as Inf*S* if
	- (a) *is a lower bound of* $*S*$ *,*
	- **(b)** if *k* is another lower bound of *S*, then $l \geq k$.
- (iv) Suppose *S* bounded above (below resp.), $u \in \mathbb{R}$ is said to be maximum (minimum resp.) of *S*,

or we denote *𝑢* as Max*𝑆* (Min*𝑆* resp.) if

- (a) $u \in S$,
- **(b)** $u > s \forall s \in S$ ($s > u \forall s \in S$ resp.).

remark

- Max*S*, Min*S* may not exist even if *S* is bounded. (see example below)
- ∙ Sup*𝑆*, Inf*𝑆*, Max*𝑆*, Min*𝑆* is unique if they exist. (Why?)

1.4.2 Property (equivalent definition of Sup)

Let *u* be an upper bound of $\emptyset \neq S \subset \mathbb{R}$.

Then $u = \text{Sup } S$ if and only if $\forall \varepsilon > 0$, $\exists s_0 \in S$, s.t. $s_0 > u - \varepsilon$.

Idea

A number is NOT an upper bound of *S* if it (strictly) less than *u*.

Proof

(\Longleftarrow) Fixed any *v* be an upper bound of *S*. Suppose it were true that $v < u$.

Take $\varepsilon = u - v > 0$, by assumption, ∃ $s_0 \in S$, s.t. $s_0 > u - \varepsilon = v$.

So *v* is NOT an upper bound, contradiction arise. Hence, $v \le u$, so $u = \text{Sup } S$.

(\implies) Fixed any $\varepsilon > 0$, note that $u - \varepsilon < u$.

By def of Sup, $u - \varepsilon$ is NOT an upper bound of *S*.

Therefore, $\exists s_0 \in S$, s.t. $s_0 > u - \varepsilon$.

1.4.3 Corollary

If $M := \text{Max } S$ exists in ℝ, then $M = \text{Sup } S$.

Proof

Note that $M > M - \varepsilon \,\forall \, \varepsilon > 0$ and $M \in S$, the result follow by last prop.

Remark

Similarly, we have the following property:

Let *l* be a lower bound of $\emptyset \neq S \subset \mathbb{R}$.

Then $l = \text{Inf } S$ if and only if $\forall \varepsilon > 0$, $\exists s_0 \in S$, s.t. $s_0 < l + \varepsilon$.

1.4.4 Example

Let $S = (-\infty, 1) := \{x \in \mathbb{R} : x < 1\}$, Show that *S* has no maximum and Sup $S = 1$.

Answer

Suppose *S* has the maximum *M*, then $M \in S$, i.e. $M < 1$. Let $M' = M + \frac{1}{2}$ $rac{1}{2}(1-M).$ Since $1 - M > 0$ and $\frac{1}{2} > 0$, we have $M' > M$. Since $1 - M > 0$ and $\frac{1}{2} < 1$, we have $M' < M + (1 - M) = 1$. This means $M' \in S$ with $M' > M$, which contradict with M is the maximum of *S*. So *S* has no maximum.

By def of *S*, we have $1 > s \forall s \in S$. Hence, *S* bounded above with an upper bound 1. By Completeness Axiom of ℝ, Sup*S* exists in ℝ. Fixed any $\varepsilon > 0$, define $s_0 = 1 - \frac{\varepsilon}{2}$. Since $\varepsilon > 0$ and $\frac{1}{2} > 0$, so $s_0 = 1 - \frac{\varepsilon}{2} < 1$. Since $\varepsilon > 0$ and $\frac{1}{2} < 1$, so $s_0 = 1 - \frac{\varepsilon}{2} > 1 - \varepsilon$. Therefore, $s_0 \in S$ with $s_0 > 1 - \varepsilon$, by prop 1.4.2, $\text{Sup } S = 1$.

1.4.5 Property (Sup and subset)

Suppose $\emptyset \neq A \subset B \subset \mathbb{R}$, and A, B bounded above, then Sup A \leq Sup B.

Proof

Let $u = \text{Sup } B$. Then $u \geq b \forall b \in B$.

In fact, since $A \subset B$, so $u \ge a \forall a \in A$, i.e. *u* is an upper bound of *A*.

By definition of Sup, $\text{Sup } B = u > \text{Sup } A$.

Challenging Question

Please define Sup⊘ and Inf⊘ and explain why.

1.4.6 Property (Sup and $+$, \cdot)

Let *S*, *T* be an bounded above subset of ℝ.

We define $a + S := \{a + s | s \in S\}$ and $aS := \{as | s \in S\}$ for any $a \in \mathbb{R}$.

Also, we define $S + T := \{ s + t | s \in S, t \in T \}$.

Then

- (i) $\text{Sup}(a + S) = a + \text{Sup}(S \forall a \in \mathbb{R})$,
- (ii) $\text{Sup}(aS) = a \text{Sup}(S \ \forall \ a > 0,$
- (iii) $\text{Inf}(aS) = a\text{Sup}S \ \forall a < 0$. In particular, $\text{Inf}(-S) = -\text{Sup}S$,
- (iv) $S + T$ is bounded above with Sup $(S + T) = \text{Sup } S + \text{Sup } T$.

Proof

(i) Let $u = \text{Sup } S$. By def of Sup, $u > s \forall s \in S$.

Hence $a + u > as \forall s \in S$, i.e. $a + u > r \forall r \in a + S$.

Hence $a + S$ is bounded above with an upper bound $a + u$.

Using equivalent definition of Sup,

 $\forall \varepsilon > 0, \exists s_0 \in S, \text{ s.t. } s_0 > u - \varepsilon.$

Then, $\forall \varepsilon > 0$, $\exists s_0 \in S$, s.t. $a + s_0 > a + u - \varepsilon$. Then, $\forall \varepsilon > 0$, $\exists r_0 \in a + S$, s.t. $r_0 > a + u - \varepsilon$. Hence, $\text{Sup}(a + S) = a + u = a + \text{Sup}S$.

- (ii) Let $u = \text{Sup } S, a > 0$. By def of Sup, $u > s \forall s \in S$. Hence $au > as \forall s \in S$, i.e. $au > r \forall r \in aS$. Hence *aS* is bounded above with an upper bound *au*. Using equivalent definition of Sup, $\forall \varepsilon > 0, \exists s_0 \in S, \text{ s.t. } s_0 > u - \frac{\varepsilon}{a}$ $\frac{\varepsilon}{a}$. Note that $\frac{\varepsilon}{a} > 0$. Then, $\forall \varepsilon > 0$, $\exists s_0 \in S$, s.t. $as_0 > au - \varepsilon$. Then, $\forall \varepsilon > 0$, $\exists r_0 \in aS$, s.t. $r_0 > au - \varepsilon$. $Hence, \text{Sub}(aS) = au = a\text{Sub}(S)$.
- (iii) Let $u = \text{Sup } S$. By def of Sup, $u > s \; \forall \; s \in S$.

Hence
$$
-u < -s \forall s \in S
$$
, i.e. $-u < r \forall r \in -S$.

Hence −*S* is bounded below with a lower bound −*u*.

Using equivalent definition of Sup and Inf,

 $\forall \varepsilon > 0, \exists s_0 \in S$, s.t. $s_0 > u - \varepsilon$.

Then, $\forall \varepsilon > 0$, $\exists s_0 \in S$, s.t. $-s_0 < u + \varepsilon$.

Then,
$$
\forall \varepsilon > 0
$$
, $\exists r_0 \in -S$, s.t. $r_0 < u + \varepsilon$.

Hence, $\text{Inf}(-S) = -u = -\text{Sup }S$.

 (iv) Let $u = \text{Sup } S, v = \text{Sup } T$.

By def of Sup, $u > s \forall s \in S$ and $v > t \forall t \in T$.

Then $u + v > s + t \forall s \in S$, $t \in T$, i.e. $u + v > r \forall r \in S + T$.

Hence $S + T$ is bounded above with an upper bound $u + v$.

Using equivalent definition of Sup,

 $\forall \varepsilon > 0, \exists s_0 \in S, t_0 \in T, \text{ s.t. } s_0 > u - \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$ and $t_0 > v - \frac{\varepsilon}{2}$ $\frac{c}{2}$. Then, $\forall \varepsilon > 0$, $\exists s_0 \in S$, $t_0 \in T$, s.t. $s_0 + t_0 > u + v - \varepsilon$. Then, $\forall \varepsilon > 0$, $\exists r_0 \in S + T$, s.t. $r_0 > u + v - \varepsilon$. Hence, $\text{Sup}(S + T) = u + v = \text{Sup}(S + \text{Sup}(T))$.

1.4.7 Definition (Bounded, Sup, Inf of Real-Valued Function)

Given $f : D \to \mathbb{R}$ be a real-valued function defined on *D*. Then *f* is said to be bounded above (resp. below) if the set ${f(x) \in \mathbb{R} : x \in D}$ is bounded above (resp. below). An upper (resp. lower) bound of $\{f(x) \in \mathbb{R} : x \in D\}$ is also called an upper (resp. lower) bound of *f* on *D*. *f* is said to be bounded if *f* is both bounded above and below. If *f* is bounded above, We define Supremum of *f* on *D* by Sup $f(x) = \sup\{f(x) \in \mathbb{R} : x \in D\}$. If *f* is bounded below, We define Infimum of *f* on *D* by $\text{Inf}_{x \in D} f(x) = \text{Inf}_{\{f(x) \in \mathbb{R} : x \in D\}}$.

1.4.8 Property

Given *f*, $g : D \to \mathbb{R}$ be a real-valued functions defined on *D*.

Note that $f + g$ is a real-valued functions defined on *D*

such that $(f + g)(x) = f(x) + g(x) \forall x \in D$. Then (i) If $f(x) \leq g(x) \forall x \in D$, Then $\sup_{x \in D} f(x) \leq \sup_{x \in D} g(x)$. **(ii)** Sup $(f + g)(x)$ ≤ Sup $f(x)$ + Sup $g(x)$.
x∈*D*

Proof

(i) Let
$$
G = \text{Sup } g(x)
$$
.

Then by def of Sup, $G \ge g(x) \ge f(x) \forall x \in D$.

Then *G* is an upper bound of *f* on *D*.

By def of Sup, Sup *𝑥*∈*𝐷* $g(x) = G \geq \text{Sup}$ *𝑥*∈*𝐷* $f(x)$.

(ii) Let
$$
F = \text{Sup } f(x)
$$
, $G = \text{Sup } g(x)$.

Then by def of Sup, $F \ge f(x)$ and $G \ge g(x) \forall x \in D$.

Hence $F + G \ge f(x) + g(x) = (f + g)(x) \forall x \in D$.

Then $F + G$ is an upper bound of $f + g$ on *D*.

By def of Sup, Sup $f(x) + \text{Sup } g(x) = F + G \ge \text{Sup } (f + g)(x)$.
 $x \in D$

Remark

The following statements are false, think about the counter example.

\n- (i) If
$$
f(x) \leq g(x) \forall x \in D
$$
, then $\sup_{x \in D} f(x) \leq \inf_{x \in D} g(x)$.
\n- (ii) $\sup_{x \in D} (f + g)(x) = \sup_{x \in D} f(x) + \sup_{x \in D} g(x)$.
\n

1.5 Archimedean Property

1.5.1 Main Statement

 $\forall x \in \mathbb{R}, \exists n_x \in \mathbb{N}, \text{ s.t. } x \leq n_x$.

Equivalently, $\mathbb N$ is NOT bounded above.

Proof

Suppose it were true that $\mathbb N$ is bounded above.

By Completeness Axiom of ℝ, *u* :=Sup ℕ exists.

By equivalent definition of Sup, $\exists m \in \mathbb{N}$, s.t. $m > u - 1$, i.e. $m + 1 > u$.

By def of \mathbb{N} , $m + 1 \in \mathbb{N}$, but $m + 1 > u$,

which is a contradiction. Hence, ℕ is NOT bounded above.

1.5.2 Corollary

$$
\text{Inf}\left\{\frac{1}{n} : n \in \mathbb{N}\right\} = 0.
$$

Equivalently, $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}$, s.t. $0 < \frac{1}{n}$ $\frac{1}{n} < \varepsilon$.

Remark

This Corollary is sometimes referred to as the Archimedean Property.

Proof

Note that
$$
\frac{1}{n} > 0 \forall n \in \mathbb{N}
$$
, so $\left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ bounded below with a lower bound 0.
By Completeness Axiom of \mathbb{R} , $w :=\text{Inf} \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ exist in \mathbb{R} .
By def of Inf, $w \ge 0$.
 $\forall \epsilon > 0$, note that $\frac{1}{\epsilon} > 0$, by Archimedean Property,
 $\exists n \in \mathbb{N}$, s.t. $0 < \frac{1}{\epsilon} < n$, i.e. $0 < \frac{1}{n} < \epsilon$.
By def of Inf, $0 \le w \le \frac{1}{n} < \epsilon$, this is true $\forall \epsilon > 0$.
By Prop 1.2(xii), Inf $\left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = w = 0$.

1.5.3 Example

Let
$$
S = \left\{ \frac{n}{2^n} : n \in \mathbb{N} \right\}
$$
. Find Sup S, Inf S (If exist).

Answer

Note that
$$
\frac{n+1}{2^{n+1}} \le \frac{n+n}{2^{n+1}} = \frac{n}{2^n}
$$
 true $\forall n \in \mathbb{N}$, so $\frac{n+1}{2^{n+1}} \le \frac{n}{2^n} \le ... \le \frac{1}{2} \in S \ \forall n \in \mathbb{N}$.
Hence Max $S = \frac{1}{2}$, and so Sup $S = \frac{1}{2}$.

Note that $\frac{n}{2^n} > 0 \forall n \in \mathbb{N}$. Then *S* is bounded below with lower bound 0.

By Completeness Axiom of ℝ, $w = \text{Inf } S$ exists in ℝ, and $w \ge 0$.

Fixed any $\varepsilon > 0$, by Archimedean Property, $\exists n' \in \mathbb{N}$, s.t. $\frac{1}{n}$ $\frac{1}{n'} < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$, i.e. $\frac{2}{n'} < \varepsilon$. Then

$$
0 \le w \le \frac{n'}{2^{n'}} = \frac{n'}{(1+1)^{n'}} \sum_{\substack{Inequality \\ Inequality}}^{\text{Bernoulli's}} \frac{n'}{1+n'+\frac{1}{2}n'(n'-1)} = \frac{2}{\frac{2}{n'}+2+(n'-1)} = \frac{2}{n'+1+\frac{2}{n'}}
$$

$$
\le \frac{2}{n'} < \varepsilon.
$$

By Prop 1.2(xii), Inf $S = w = 0$.

1.6 Interval

1.6.1 Characterization of Interval

Let $\emptyset \neq S \subset \mathbb{R}$.

S is an interval if and only if $\forall x, y \in S$ with $x < y$, we have $[x, y] \subset S$.

1.6.2 Property (Union of Interval)

Let ${I_n}_{n=1}^{\infty}$ be sequence of interval.

If
$$
\bigcap_{n=1}^{\infty} I_n := \{x \in \mathbb{R} : x \in I_n \forall n \in \mathbb{N}\}
$$
 is non-empty,
then $\bigcup_{n=1}^{\infty} I_n := \{x \in \mathbb{R} : x \in I_n \text{ for some } n \in \mathbb{N}\}$ is an interval.

Proof

Let
$$
z \in \bigcap_{n=1}^{\infty} I_n
$$
. Pick any $x, y \in \bigcup_{n=1}^{\infty} I_n$ with $x < y$, we want to show $[x, y] \subset \bigcup_{n=1}^{\infty} I_n$.

By def of union, $\exists n_x, n_y$, s.t. $x \in I_{n_x}$ and $y \in I_{n_y}$.

By def of intersection, $z \in I_{n_x}$ and $z \in I_{n_y}$.

(Case 1) Suppose $x \leq z \leq y$.

By characterization of interval, $[x, z] \subset I_{n_x}$ and $[z, y] \subset I_{n_y}$.

Hence,
$$
[x, y] = [x, z] \cup [z, y] \subset \bigcup_{n=1}^{\infty} I_n
$$
.

(Case 2) Suppose $z < x < y$.

By characterization of interval, $[z, y] \subset I_{n_y}$.

Hence,
$$
[x, y] \subset [z, y] \subset I_{n_y} \subset \bigcup_{n=1}^{\infty} I_n
$$

(Case 3) Suppose $x < y \le z$. it is similarly with Case 2.

In any case, $[x, y] \subset \bigcup^{\infty}$ $n=1$ I_n . By characterization of interval, $\bigcup_{n=1}^{\infty}$ $n=1$ I_n is an interval.

1.6.3 Nested Interval Theorem

Let $I_n := [a_n, b_n]$ be nested sequence (i.e. $I_{n+1} \subset I_n \forall n \in \mathbb{N}$) of CLOSED, BOUNDED intervals. Then $\exists \xi \in \mathbb{R}$, s.t. $\xi \in I_n \forall n \in \mathbb{N}$. That is, $\bigcap_{n=1}^{\infty} I_n$ $n=1$ $I_n \neq \emptyset$.

.

Furthermore, if the length of the intervals $b_n - a_n$ satisfy Inf $\{b_n - a_n : n \in \mathbb{N}\} = 0$,

Then
$$
\bigcap_{n=1}^{\infty} I_n
$$
 is a singleton. That is, $\exists! \xi \in \mathbb{R}$, s.t.
$$
\bigcap_{n=1}^{\infty} I_n = \{\xi\}.
$$

1.6.4 Counter Example If Dropping Closed or Bounded Assumption

(Example 1) Let $I_n =$ $\overline{ }$ $0, \frac{1}{2}$ \boldsymbol{n} \mathbf{r} $\forall n \in \mathbb{N}$. Note that $I_{n+1} \subset I_n \ \forall n \in \mathbb{N}$.

Hence, I_n is nested sequence of (bounded but not closed) intervals.

Suppose it were true that
$$
\bigcap_{n=1}^{\infty} I_n \neq \emptyset.
$$
 Let $\xi \in \bigcap_{n=1}^{\infty} I_n$.

By def of I_n , $\xi > 0$. But by Archimedean Property, $\exists N \in \mathbb{N}$, s.t. $0 < \frac{1}{N}$ $\frac{1}{N} < \xi$.

It is a contradiction since $\xi \notin I_N$. Therefore, \bigcap^{∞} $n=1$ $I_n = \emptyset$. **(Example 2)** Let $I_n = [n, +\infty) \ \forall n \in \mathbb{N}$. Note that $I_{n+1} \subset I_n \ \forall n \in \mathbb{N}$.

Hence, I_n is nested sequence of (closed but not bounded) intervals.

Suppose it were true that
$$
\bigcap_{n=1}^{\infty} I_n \neq \emptyset.
$$
 Let $\xi \in \bigcap_{n=1}^{\infty} I_n$.

Note that $\xi \in \mathbb{R}$. But by Archimedean Property, $\exists N \in \mathbb{N}$, s.t. $\xi \leq N$.

It is a contradiction since $\xi \notin I_N$. Therefore, \bigcap^{∞} $n=1$ $I_n = \emptyset$.

2 Sequences

2.1 Definition and Basic Property

2.1.1 Definition (Sequence)

A sequence in ℝ is a function $a : \mathbb{N} \to \mathbb{R}$.

We usually write $a(n)$ as a_n . Also, we write the sequence a as

$$
{a_n}
$$
, (a_n) , ${a_n}_{n=1}^{\infty}$ or $(a_n)_{n=1}^{\infty}$

2.1.2 Definition (Limit of Sequence)

Let $\{x_n\}$ be a sequence in ℝ. We say x_n converge to $L \in \mathbb{R}$ if

 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{ s.t. } \forall n \in \mathbb{N} \text{ with } n \geq N, \text{ we have } |x_n - L| < \varepsilon.$

In this case, we say L is a limit of x_n and x_n is a convergent sequence.

If x_n has no limit in ℝ, then we say x_n is a divergent sequence.

Remark

(i) When the question need you to prove L is the limit of sequence,

you CANNOT determine the value of ε , you only know ε is arbitrary (small) positive number, and then find a (large) *N* (depends on ε) satisfy the result.

(ii) When the question give you the result that $L = \lim_{n} x_n$,

you can take any positive number of ε ,

could be 1, $\frac{|x|}{2}$ (for some $x \neq 0$), or just write $\varepsilon > 0$, depends on what is the conclusion. then the assumption will give you a (large) N (you don't know what this N is), such that $|x_n - L| \le \varepsilon \ \forall \ n \ge N$, and then using this fact to prove the result.

(iii) x_n is divergent if $\forall L \in \mathbb{R}, \exists \varepsilon_0 > 0$, s.t. $\forall N \in \mathbb{N}, \exists n' \ge N$, s.t. $|x_{n'} - L| \ge \varepsilon_0$.

2.1.3 Property (Uniqueness of Limit)

Limit of a convergent sequence in $ℝ$ is unique.

Therefore, if $L \in \mathbb{R}$ is the limit of $\{x_n\}$, we will write in this notation:

$$
\lim_{n} x_{n} = L \quad \text{OR} \quad x_{n} \to L \quad \text{as } n \to \infty.
$$

Proof

Let *L*, $L' \in \mathbb{R}$ be limits of a convergent sequence x_n . Pick any $\varepsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \geq N$, we have $|x_n - L| < \frac{\varepsilon}{2}$ $\frac{1}{2}$ $\exists N' \in \mathbb{N}$, s.t. $\forall n \geq N'$, we have $|x_n - L'| < \frac{\varepsilon}{2}$ $\frac{c}{2}$. Take $M = \text{Max} \{N, N'\},\$ $\text{Then } |L - L'| \leq |L - x_M| + |x_M - L'| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} + \frac{\varepsilon}{2}$ $\frac{\epsilon}{2} = \epsilon.$ This true for any $\varepsilon > 0$, so $|L - L'| = 0$. Hence, $L = L'$.

2.1.4 Example

Determine the following sequences are convergent / divergent.

If convergent, guess the limit and prove it by $\varepsilon - N$ definition. If divergent, give a reason.

(a)
$$
a_n = \frac{1}{n}
$$
,
\n(b) $a_n = (-1)^n$,
\n(c) $a_n = \frac{5n+2}{n+1}$,
\n(d) $a_n = r^n$ given that $0 < r < 1$.

Answer

(a) Guess a_n converge to 0.

Fixed any $\varepsilon > 0$, by A.P., $\exists N \in \mathbb{N}$, s.t. $0 < \frac{1}{N}$ $\frac{1}{N} < \varepsilon$. Note that $\forall n \geq N$, we have $0 < \frac{1}{n}$ \boldsymbol{n} $\lt \frac{1}{1}$ $\frac{1}{N} < \varepsilon$, that means $\forall n \geq N$, we have $|a_n - 0| = \frac{1}{n}$ $\frac{1}{n} < \varepsilon$. Hence, $\{a_n\}$ convergent with $\lim_{n} a_n = 0$.

(b) Guess a_n divergent.

Fixed any $L \in \mathbb{R}$, take $\varepsilon_0 = \frac{1}{2}$ $\frac{1}{2}$ Max { $|L - 1|$, $|L + 1|$ $\}$ > 0, fixed any *N* $\in \mathbb{N}$,

(Case 1) Suppose $\varepsilon_0 = \frac{1}{2}$ 2 $|L - 1| > 0.$ Take $n' = 2N \ge N$, then $|a_{n'} - L| = |1 - L| = |L - 1| \ge \varepsilon_0$. **(Case 2)** Suppose $\varepsilon_0 = \frac{1}{2}$ 2 $|L + 1| > 0.$

Take
$$
n' = 2N + 1 \ge N
$$
, then $|a_{n'} - L| = |-1 - L| = |L + 1| \ge \varepsilon_0$.

In any case, we can find $n' \ge N$ s.t. $|a_{n'} - L| \ge \epsilon_0$, hence, $\{a_n\}$ divergent.

(c) Guess a_n converge to 5.

Fixed any $\varepsilon > 0$, by A.P., $\exists N \in \mathbb{N}$, s.t. $0 < \frac{1}{N}$ $\frac{1}{N} < \frac{\varepsilon}{3}$ $\frac{c}{3}$. Note that $\forall n \geq N$, we have $0 < \frac{3}{2}$ \boldsymbol{n} ≤ 3 $\frac{3}{N} < \varepsilon$, that means $\forall n \ge N$, we have $|a_n - 5| = \left| \frac{1}{n} \right|$ −3 $n + 1$ | | | | *<* 3 $\frac{3}{n} < \varepsilon$. Hence, $\{a_n\}$ convergent with $\lim_{n} a_n = 5$.

(d) Guess a_n converge to 0. [We want to use Bernoulli's Inequality.]

Let $q = \frac{1}{\sqrt{2}}$ $\frac{1}{r} - 1 > 0$, then $r = \frac{1}{q + 1}$ $\frac{1}{q+1}$. Fixed any $\varepsilon > 0$, by A.P., $\exists N \in \mathbb{N}$, s.t. $0 < \frac{1}{N}$ $\frac{1}{N}$ < $q\epsilon$. Note that $\forall n \geq N$, we have $0 < \frac{1}{n}$ nq $\lt \frac{1}{Nq} < \varepsilon$,

that means $\forall n \ge N$, we have $|a_n - 0| = r^n = \frac{1}{(a + 1)^n}$ $(q + 1)^n$ *Bernoulli's <i>Inequality* 1 $1 + nq$ $\lt \frac{1}{1}$ $\frac{1}{nq} < \varepsilon$. Hence, $\{a_n\}$ convergent with $\lim_{n} a_n = 0$.

2.1.5 Definition (Bounded)

A sequence x_n is said to be bounded if $\exists M > 0$, s.t. $|x_n| < M \forall n \in \mathbb{N}$.

2.1.6 Property

Convergent sequence must be bounded.

Proof

Let $\{x_n\}$ be convergent sequence with limit $x \in \mathbb{R}$. Take $\varepsilon = 1$, $\exists N \in \mathbb{N}$, s.t. $|x_n - x| < \varepsilon = 1 \forall n \ge N$. i.e. $x - 1 < x_n < x + 1$ ∀ $n \ge N$. i.e. $|x_n| < \text{Max } (|x-1|, |x+1|)$ $}$ ∀ *n* ≥ *N*. (*Remark*: it is necessary since *x* + 1 can be negative.) $\text{Hence}, |x_n| < \text{Max } \{ |x_1|, |x_2|, ..., |x_{N-1} |, |x-1|, |x+1| \}$ } ∀ *𝑛* ∈ ℕ (*Remark*: This Max exist in ℝ since the set is finite.) Hence, $\{x_n\}$ is bounded.

Remark

The converse is not true, the counter example is 2.1.4(b),

the sequence is bounded but not convergent.

2.1.7 Property

Fixed some $m \in \mathbb{N}$.

 ${x_n}_{n=1}^{\infty}$ is a convergent sequence if and only if ${x_{n+m}}_{n=1}^{\infty}$ is also a convergent sequence.

In this case, $\lim_{n} x_n = \lim_{n} x_{n+m}$.

Idea

The limit/convergence of a sequence describe the mass behaviour of the terms for all *n* large,

it will NOT be affected by finitely many terms.

Proof

 (\Longrightarrow) Suppose x_n converge to $x \in \mathbb{R}$.

Then fixed any $\varepsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \geq N$, we have $|x_n - x| < \varepsilon$.

In particular, we have $|x_{n+m} - x| < \varepsilon \ \forall \ n+m \ge N$.

That is we have $|x_{n+m} - x| < \varepsilon \ \forall \ n \ge N$. (since $m \ge 1$.)

Hence, we have x_{n+m} converge to *x*.

 (\Leftarrow) Suppose x_{n+m} converge to $x \in \mathbb{R}$.

Then fixed any $\varepsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \geq N$, we have $|x_{n+m} - x| < \varepsilon$.

Let
$$
N' = N + m \in \mathbb{N}
$$
, then we have $|x_n - x| < \varepsilon \ \forall \ n \ge N'$.

Hence, we have x_n converge to x .

2.1.8 Property

Let $\{x_n\}$ be a convergent sequence with $\lim_n x_n = x$.

If $\alpha < x < \beta$ for some $\alpha, \beta \in \mathbb{R}$, show that $\exists N \in \mathbb{N}$ s.t. $\alpha < x_n < \beta \ \forall n \geq N$.

Proof

Take $\varepsilon_0 = \text{Min}\{\beta - x, x - \alpha\} > 0$, by x_n converge to *x*, $\exists N \in \mathbb{N}, \text{ s.t. } |x_n - x| < \varepsilon_0 \ \forall n \ge N$, that is $x - \varepsilon_0 < x_n < x + \varepsilon_0 \forall n \ge N$. Note that $\varepsilon \leq \beta - x$ and $\varepsilon \leq x - \alpha$ by definition of Min. Hence, *α* = *x* − (*x* − *α*) ≤ *x* − $ε_0$ < *x_n* < *x* + $ε_0$ ≤ *x* + (β − *x*) = β ∀ *n* ≥ *N*.

2.2 Monotone Convergent Theorem

2.2.1 Definition

- A sequence $\{x_n\}$ is said to be increasing if $x_n \le x_{n+1} \forall n \in \mathbb{N}$.
- A sequence $\{x_n\}$ is said to be decreasing if $x_n \ge x_{n+1} \forall n \in \mathbb{N}$.
- ∙ A sequence is said to be monotone if it is increasing or decreasing.

2.2.2 Main Statement of Theorem

• An increasing sequence $\{x_n\}$ is convergent if and only if it is bounded above. In this case,

$$
\lim_n x_n = \text{Sup } \{x_n : n \in \mathbb{N}\}\
$$

• An decreasing sequence $\{x_n\}$ is convergent if and only if it is bounded below. In this case,

$$
\lim_n x_n = \text{Inf } \{x_n : n \in \mathbb{N}\}
$$

Remark

The theorem is still true if the tail of the sequence is monotone.

2.2.3 Example

Let $x_1 = 8, x_{n+1} = \frac{1}{2}$ $\frac{1}{2}x_n + 2 \forall n \in \mathbb{N}$. Show $\{x_n\}$ convergent and find the limit.

Answer

Use induction on *n* to show the sequence is decreasing and bounded below by 0.

Note $0 < x_2 = 6 \leq 8 = x_1$. Now assume $0 < x_k \leq x_{k-1}$ for some $k \in \mathbb{N}$.

Then
$$
x_{k+1} = \frac{1}{2}x_k + 2 \le \frac{1}{2}x_{k-1} + 2 = x_k
$$
 and $x_{k+1} = \frac{1}{2}x_k + 2 > 0 + 2 > 0$.

Then $\{x_n\}$ is a bounded below decreasing sequence and

hence convergent by Monotone Convergent Theorem.

Let $x = \lim_{n} x_n$, then we have

$$
\lim_{n} x_{n+1} = \frac{1}{2} \lim_{n} x_n + 2
$$

$$
x = \frac{1}{2} x + 2
$$

$$
x = 4.
$$

2.3 Bolzano-Weierstrass Theorem

2.3.1 Definition

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in ℝ, and ${n_k}_{k=1}^{\infty}$ be a STRICTLY increasing sequence in N. (i.e $n_1 < n_2 < ...$ and $n_k \in \mathbb{N} \forall k \in \mathbb{N}$) The sequence $\left\{ x_{n_k} \right\}$ }∞ $\sum_{k=1}^{\infty}$ is called a subsequence of $\{x_n\}$.

2.3.2 Example

Let $x_n = \frac{1}{2n}$ $\frac{1}{2n+3}$, $n_k = k^2$, the subsequence can be expression by this table:

2.3.3 Property

Let $\left\{ x_{n_k} \right\}$ $\}$ be subsquence of $\{x_n\}$ in ℝ. Then

- (i) $n_k \geq k \forall k \in \mathbb{N}$.
- **(ii)** if $\{x_n\}$ converge, then $\{x_{n_k}\}\}$ λ converge to same limit.

Proof

(i) Use Induction on *k*, it is true when $k = 1$ since Min $\mathbb{N} = 1$.

Assume $n_l \geq l$ for some $l \in \mathbb{N}$, then $n_{l+1} > n_l \geq l$, so $n_{l+1} \geq l+1$. (Why?)

Hence, $n_k \geq k \forall k \in \mathbb{N}$.

(ii) Suppose $\lim_{n} x_n = x \in \mathbb{R}$. Fixed any $\varepsilon > 0$, we have some $N \in \mathbb{N}$, s.t. $|x_n - x| < \varepsilon \ \forall n \ge N$.

In particular, by (i), if $k \ge N$, $n_k \ge N$, so $\left| x_{n_k} - x \right| < \varepsilon \ \forall \ k \ge N$. That is, $\lim_{k} x_{n_k} = x$.

2.3.4 Corollary

If the sequence $\{x_n\}$

- **(i)** has a divergent subsequence, OR
- **(ii)** has two convergent subsequence $\left\{ x_{n} \right\}$ $\Big\}$, and $\Big\{ x_{n_j}$ λ with $\lim_{i} x_{n_i} \neq \lim_{j} x_{n_j}$,

then $\{x_n\}$ is divergent.

2.3.5 Claim

Every sequence in ℝ has a monotone subsequence.

Proof

Let $\{x_n\}$ be a sequence in ℝ. We define x_m is a "peak" if $x_m \ge x_n \forall m \le n$.

(Case 1) Suppose $\{x_n\}$ has infinitely many "peaks".

Then list the "peaks" $x_{m_1}, x_{m_2}, ..., x_{m_k}, ...$ with $m_1 < m_2 < ... < m_k < ...$ By definition of "peak", we have $x_{m_1} \ge x_{m_2} \ge ... \ge x_{m_k} \ge ...$

hence $\left\{ x_{m_k} \right\}$ λ is a decreasing subsequence.

15

(Case 2) Suppose $\{x_n\}$ has finitely many "peaks". Then list ALL "peaks" $x_{m_1}, x_{m_2}, ..., x_{m_N}$ with $m_1 < m_2 < ... < m_N$. That means x_n is NOT a "peak" if $n > N$. Take $n_1 = N + 1 > N$, since x_{n_1} is not a "peak", then $\exists n_2 > n_1$, s.t. $x_{n_2} > x_{n_1}$. Since $n_2 > n_1 > N$, then x_{n_2} is not a "peak", then $\exists n_3 > n_2 > n_1$, s.t. $x_{n_3} > x_{n_2} > x_{n_1}$. Repeat the process, we have $N < n_1 < n_2 < ... < n_k < ...$ such that $x_{n_1} < x_{n_2} < \ldots < x_{n_k} < \ldots$ that means $\left\{ x_{n_k} \right\}$ λ is a (strictly) incresing subsequence.

2.3.6 Bolzano-Weierstrass Theorem

Every bounded sequence has convergent subsequence.

Proof (from Monotone Convergent Theorem)

Let $\{x_n\}$ be bounded sequence. By the claim, there are a monotone subsequence $\{x_{n_k}\}$ λ .

Since
$$
\{x_n\}
$$
 bounded, so $\{x_{n_k}\}$ bounded. (Why?)

By Monotone Convergent Theorem, $\left\{ x_{n_k} \right\}$ λ converge.

2.4 Cauchy Convergent Theorem

2.4.1 Definition

A sequence in ℝ is said to be Cauchy if

$$
\forall \varepsilon > 0, \exists \ N \in \mathbb{N}, \ \text{s.t.} \ \forall \ n, m \ge N, \ \text{we have} \ |x_n - x_m| < \varepsilon.
$$

2.4.2 Main Statement of Theorem

A sequence in ℝ is convergent if and only if it is Cauchy.

2.5 Properly Divergent and Series

2.5.1 Definition

(i) A sequence $\{x_n\}$ in ℝ is said to be tends to +∞, denoted as $\lim_n x_n = +\infty$,

if \forall *M* > 0, ∃ *N* ∈ ℕ, s.t. \forall *n* ≥ *N*, we have x_n > *M*.

(ii) A sequence $\{x_n\}$ in ℝ is said to be tends to $-\infty$, denoted as $\lim_n x_n = -\infty$,

if \forall *M* > 0, ∃ *N* ∈ ℕ, s.t. \forall *n* ≥ *N*, we have $x_n < -M$.

(iii) In this two cases, the sequence is called properly divergent.

2.5.2 Example involving summation

Let $\{x_n\}$ be a sequence in ℝ. Define $\{S_n\}$ by

$$
S_n = \frac{1}{n} (x_1 + x_2 + \dots + x_n) = \frac{1}{n} \sum_{i=1}^n x_i,
$$

that is the mean of first *n* terms.

- (a) If $\lim_{n} x_n = x \in \mathbb{R}$, show that $\lim_{n} S_n = x$.
- **(b)** If $\lim_{n} x_n = +\infty$, what can you say about $\lim_{n} S_n$? Provide the reason.

(c) Is that true that $\{x_n\}$ is convergent given that $\{S_n\}$ is convergent?

Answer

(a) Fixed any $\varepsilon > 0$,

by $\lim_{n} x_n = x$, $\exists N_1 \in \mathbb{N}$, s.t. $|x_n - x| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$ \forall $n \geq N_1$. Now $K := \sum_{i=1}^{N_1}$ $\mathbf{i} = 1$ $|x_i - x| + 1$ is a fixed constant, by A.P., ∃ $N_2 \in \mathbb{N}$, s.t. $\frac{1}{N}$ $\frac{1}{N_2} < \frac{\varepsilon}{2I}$ $rac{\epsilon}{2K}$.

Take $N = \text{Max} \{N_1, N_2\}$. If $n \geq N$, we have

$$
|S_n - x| = \frac{1}{n} \left| \sum_{i=1}^n x_i - nx \right| = \frac{1}{n} \left| \sum_{i=1}^n (x_i - x) \right|
$$

\n
$$
\leq \frac{1}{n} \sum_{i=1}^n |x_i - x|
$$

\n
$$
= \frac{1}{n} \sum_{i=1}^{N_1} |x_i - x| + \frac{1}{n} \sum_{i=N_1+1}^n |x_i - x|
$$

\n
$$
< \frac{1}{N_2} K + \frac{1}{n} \sum_{i=N_1+1}^n \frac{\varepsilon}{2}
$$

\n
$$
< \frac{\varepsilon}{2} + \frac{n - N_1}{n} \frac{\varepsilon}{2}
$$

\n
$$
\leq \varepsilon.
$$

Hence, we have $\lim_{n} S_n = x$.

(b) Guess $\lim_{n} S_n = +\infty$. Fixed any $M > 0$,

by $\lim_{n} x_n = +\infty, \exists N_1 \in \mathbb{N}, \text{ s.t. } x_n > 3M \ \forall n \ge N_1.$

Now
$$
K := \sum_{i=1}^{N_1} |x_i|
$$
 is a fixed constant, by A.P., $\exists N_2 \in \mathbb{N}$, s.t. $\frac{K}{M} < N_2$.

Note $x_i \ge -|x_i| \forall i = 1, 2, ..., N_1 - 1$, so $\frac{1}{n}$ \boldsymbol{n} ∑ *𝑁*¹ $\mathbf{i} = 1$ $x_i \geq -\frac{1}{n}$ \boldsymbol{n} ∑ *𝑁*¹ $\mathbf{i} = 1$ $|x_i| \geq -\frac{K}{N}$ $\frac{K}{N_2} \geq -M \ \forall \ n \geq N_2.$

Take $N = \text{Max } \{3N_1, N_2\}$. If $n \geq N$, we have

$$
\frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{N_1} x_i + \frac{1}{n} \sum_{i=N_1+1}^{n} x_i
$$

> -M + $\frac{n - N_1}{n}$ (3M)
= -M + $\left(1 - \frac{N_1}{n}\right)$ (3M)
 $\ge -M\left(1 - \frac{N_1}{3N_1}\right)$ (3M)
= -M + $\frac{2}{3} \cdot 3M$
= M

Hence, we have $\lim_{n} S_n = +\infty$.

(c) NO. Consider the counter example $x_n = (-1)^n$, Note $\{x_n\}$ is NOT a convergent sequence but $S_n =$ \bigcap $\frac{1}{n}$, if *n* is odd \int_{0}^{n} , if *n* is even converge to 0.

Limit Superior and Limit Inferior

2.5.3 Definition

Let $\{x_n\}$ be a BOUNDED sequence in ℝ. We define

•
$$
\limsup_{n} x_n = \limsup_{n} x_k,
$$

• $\liminf_{n} x_n = \liminf_{n} x_k$.

2.5.4 Equivalent Definition

Let $\{x_n\}$ be a bounded sequence in ℝ. Then $\limsup_n x_n = x$ is equivalent to

- (i) $x = \limsup_n x_n = \limsup_{n \to \infty} x_k = \inf_{n \in \mathbb{N}} \sup_{k \ge n} x_k$, OR
- (ii) $\forall \varepsilon > 0$, $x + \varepsilon < x_n$ for ONLY finitely many $n \in \mathbb{N}$ but $x - \varepsilon < x_n$ for INFINTELY many $n \in \mathbb{N}$.

2.5.5 Property

Let $\{x_n\}$ be a bounded sequence in ℝ. Then

 ${x_n}$ is convergent if and only if $\limsup_n x_n = \liminf_n x_n$.

In this case, we have $\limsup_{n} x_n = \lim_{n} x_n = \liminf_{n} x_n$.

Proof

(\implies Suppose $\lim_{n} x_n = x \in \mathbb{R}$. Fixed any $\varepsilon > 0$, ∃ $N \in \mathbb{N}$, s.t. $|x_n - x| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$ \forall $n \geq N$. That is, $x - \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} < x_n < x + \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$ \forall *n* \geq *N*. Therefore, for any *n* \geq *N*, we have $x - \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} < \sup_{k \ge n} x_k \le x + \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$ and $x - \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} \leq \inf_{k \geq n} x_k < x + \frac{\varepsilon}{2}$ $\frac{6}{2}$

Hence, we have | | | | | $\sup_{k \geq n} x_k - x$ |
|
|
|
|
| ≤ *𝜀* $\frac{\varepsilon}{2} < \varepsilon$ and $\inf_{k \geq n} x_k - x$ ≤ *𝜀* $\frac{\varepsilon}{2} < \varepsilon \ \forall \ n \geq N.$

Hence, $\limsup_{n} x_n = x = \liminf_{n} x_n$.

(**←**) Suppose $\limsup_{n} x_n = \liminf_{n} x_n = x \in \mathbb{R}$. Fixed any $\varepsilon > 0$,

$$
\exists N_1 \in \mathbb{N}, \text{ s.t. } \left| \sup_{k \ge n} x_k - x \right| < \varepsilon \, \forall n \ge N_1, \text{ in particular, } \sup_{k \ge n} x_k < x + \varepsilon \, \forall n \ge N_1.
$$
\n
$$
\exists N_2 \in \mathbb{N}, \text{ s.t. } \left| \inf_{k \ge n} x_k - x \right| < \varepsilon \, \forall n \ge N_2, \text{ in particular, } \inf_{k \ge n} x_k > x - \varepsilon \, \forall n \ge N_2.
$$
\n
$$
\text{Hence, for any } n \ge N := \text{Max } \{N_1, N_2\}, \text{ we have}
$$

$$
x-\varepsilon<\inf_{k\geq N}x_k\leq x_n\leq \sup_{k\geq N}x_k< x+\varepsilon.
$$

That is, we have $|x_n - x| \leq \varepsilon \ \forall \ n \geq N$.

Therefore, $\{x_n\}$ is convergent with $\lim_n x_n = x$.

2.5.6 Property

Let $\{x_n\}$, $\{y_n\}$ be bounded sequences in ℝ. Then

$$
\limsup_{n} (x_n + y_n) \le \limsup_{n} x_n + \limsup_{n} y_n.
$$

Proof

Note for any
$$
n \in \mathbb{N}
$$
, $x_m + y_m \le \sup_{k \ge n} x_k + \sup_{k \ge n} y_k \ \forall \ m \ge n$,

Hence sup
 $\underset{k \geq n}{\text{Hence}}$ $(x_k + y_k) \le \sup_{k \ge n} x_k + \sup_{k \ge n} y_k \ \forall \ n \in \mathbb{N}$. Therefore,

$$
\limsup_{n} (x_k + y_k) \le \lim_{n} \left(\sup_{k \ge n} x_k + \sup_{k \ge n} y_k \right) = \limsup_{n} x_n + \limsup_{n} y_n.
$$

Remark

The inequality may be occur. Think about $x_n = (-1)^n$ and $y_n = (-1)^{n+1}$.

3 Limit of Function

3.1 Basic Property

3.1.1 Definition (Neighborhood)

Let *c* ∈ ℝ, δ > 0, we denote the δ -neighborhood of c as

$$
V_{\delta} := (c - \delta, c + \delta) = \{x \in \mathbb{R} : |x - c| < \delta\}.
$$

3.1.2 Definition (Cluster Point)

Let $A \subset \mathbb{R}$. A point $c \in \mathbb{R}$ is said to be a cluster point w.r.t. A if

$$
\forall \varepsilon > 0, \exists x \in A \text{ with } x \neq c, \text{ s.t. } |x - c| < \varepsilon \text{ (Or } x \in V_{\varepsilon}(c) \setminus \{c\}).
$$

Remark

A cluster point $c \in \mathbb{R}$ w.r.t. *A* may NOT be in *A*. (Consider $A = \mathbb{R} \setminus \{0\}$, $c = 0$)

A point *a* ∈ *A* may NOT be a cluster point w.r.t *A*. (Consider $A = \{0\}$ *, a* = 0)

3.1.3 Definition (Limit of Function)

Let $\emptyset \neq A \subset \mathbb{R}$, $f : A \to \mathbb{R}$ be a function, $c \in \mathbb{R}$ be a cluster point w.r.t. A.

 $L \in \mathbb{R}$ is said to be a limit of f at c if

$$
\forall \varepsilon > 0, \exists \delta > 0, \text{ s.t. } \forall x \in (c - \delta, c + \delta) \text{ with } x \neq c, \text{ we have } |f(x) - L| < \varepsilon.
$$

By some property, we know the limit of f at c is unique if it exists,

hence we will denote the above case as

$$
\lim_{x \to c} f(x) = L \text{ or } f(x) \to L \text{ as } x \to c
$$

3.1.4 Definition

Sometime, we will discuss different types of limit of function.

For example, we will discuss f tends to infinity or as x tends to infinity or the one-sided limit.

It will be difficult to remember all the cases. But the patterns of them are similar.

lim $f(x) = L$ if ∀ Statement A, ∃ Statement B, s.t. ∀ $x \in \mathbb{R}$ with Statement C, we have Statement D.

Example

 $\lim_{x \to 2^-} f(x) = +\infty$ means ∀ *M* > 0, ∃ δ > 0, s.t. ∀ *x* ∈ ℝ with $0 < x - 2 < \delta$, we have $f(x) > M$.

3.1.5 Example

Guess the limit and proof by definition.

(i)
$$
\lim_{x \to -1} \frac{x^2}{x+2}
$$
 (Ans: 1)
\n(ii) $\lim_{x \to 2} \frac{x^3 + 3}{x-1}$ (Ans: 11)
\n(iii) $\lim_{x \to 1^{-}} \frac{x}{x-1}$ (Ans: $-\infty$)
\n(iv) $\lim_{x \to -\infty} \frac{x^2}{2x^2 - 1}$ (Ans: $\frac{1}{2}$)

Answer

(i) Fixed any $\epsilon > 0$, take $\delta = \text{Min} \left\{ \frac{1}{2} \right\}$ $\frac{1}{2}, \frac{\varepsilon}{8}$ 8 λ > 0 , if $x \in \mathbb{R}$ with $0 < |x + 1| < \delta$, we have $-1 - \delta < x < -1 + \delta$ $-\frac{3}{2}$ $\frac{3}{2} < x < -\frac{1}{2}$ $\frac{1}{2}$ < 0.

That is, $0 < \frac{1}{2}$ $\frac{1}{2}$ < *x* + 2 < 2 and hence $\frac{1}{2}$ < $\frac{1}{x+1}$ $\frac{1}{x+2}$ < 2, and also, $|x| < \frac{3}{2}$ $\frac{3}{2}$ < 2.

If
$$
x \in \mathbb{R}
$$
 with $0 < |x + 1| < \delta$, we have

$$
\left| \frac{x^2}{x+2} - 1 \right| = \left| \frac{x^2 - x - 2}{x+2} \right| = |x - 1| \left| \frac{x-2}{x+2} \right| \le 2\delta \left(|x| + 2 \right) \le 8\delta < \epsilon.
$$

Hence,
$$
\lim_{x \to -1} \frac{x^2}{x+2} = 1.
$$

(ii) Fixed any
$$
\varepsilon > 0
$$
, take $\delta = \text{Min}\left\{\frac{1}{2}, \frac{\varepsilon}{40}\right\} > 0$, if $x \in \mathbb{R}$ with $0 < |x - 2| < \delta$, we have
\n
$$
2 - \delta < x < 2 + \delta
$$
\n
$$
0 < \frac{3}{2} < x < \frac{5}{2}.
$$

That is, $0 < \frac{1}{2}$ $\frac{1}{2}$ < x - 1 < $\frac{3}{2}$ $\frac{3}{2}$ and hence $\frac{2}{3} < \frac{1}{x-1}$ $\frac{1}{x-1}$ < 2, and also, $|x|^2 + 2|x| + 7 < \frac{25}{4}$ $\frac{25}{4} + 5 + 7 < 20.$ If $x \in \mathbb{R}$ with $0 < |x - 2| < \delta$, we have

$$
\left| \frac{x^3 + 3}{x - 1} - 11 \right| = \left| \frac{x^3 - 11x + 14}{x - 1} \right| = |x = 2| \left| \frac{x^2 + 2x - 7}{x - 1} \right| \le 2\delta \left(|x|^2 + 2|x| + 7 \right) \le 40\delta < \epsilon.
$$

Hence,
$$
\lim_{x \to -1} \frac{x^3 + 3}{x - 1} = 11.
$$

(iii) Fixed any $M > 0$, take $\delta = \frac{1}{M}$ $\frac{1}{M+1} > 0$, if $x \in \mathbb{R}$ with $0 < 1 - x < \delta$, we have

$$
-x < -1 - \frac{1}{M+1} = -\frac{M}{M+1}
$$

$$
x > \frac{M}{M+1}
$$

$$
Mx + x > M
$$

$$
x > -M(x - 1)
$$

$$
\frac{x}{x-1} < -M
$$

Since $x - 1 < 0$

(iv) Fixed any $\epsilon > 0$, by A.P., ∃*M* ∈ ℕ, s.t. $\frac{1}{\lambda}$ $\frac{1}{M} < \varepsilon$, W.L.O.G, assume $M \ge 2$.

If $x < -M$, then $x^2 > M^2 > M$, and so

$$
\left|\frac{x^2}{2x^2 - 1} - \frac{1}{2}\right| = \left|\frac{1}{2(2x^2 - 1)}\right| \le \frac{1}{4M^2 - 2} \le \frac{1}{M} \le \varepsilon.
$$

Hence, $\lim_{x \to -\infty}$ x^2 $rac{x^2}{2x^2-1} = \frac{1}{2}$ $\frac{1}{2}$.

3.2 Sequential Criterion

3.2.1 Sequential Criterion for Limit of Function

Let $f : A \to \mathbb{R}, c \in \mathbb{R}$ is a cluster point of A. Let $L \in \mathbb{R}$. Then

 $\lim_{x \to c} f(x) = L$ if and only if

 $\lim_{n} f(a_n) = L$ for any sequence $\{a_n\}$ with $a_n \in A \setminus \{c\}$ $\forall n \in \mathbb{N}$ and $\lim_{n} a_n = c$.

3.2.2 Sequential / Cauchy Criterion for Limit of Function

Let $f : A \to \mathbb{R}, c \in \mathbb{R}$ is a cluster point of A. Let $L \in \mathbb{R}$.

The following statements are equivalent:

- **(i)** $\lim_{x \to c} f(x)$ exists in ℝ.
- **(ii)** *(Sequential Criterion)* $\lim_{n} f(x_n)$ exists for any sequence $\{x_n\}$ with $x_n \in A \setminus \{c\}$ $\forall n \in \mathbb{N}$ and $\lim_{n} x_n = c$. *(the limits are NOT necessarily same for each sequence, but in fact they are same.)*
- **(iii)** *(Cauchy Criterion)* $\forall \varepsilon > 0, \exists \delta > 0$, s.t. $\forall x, x' \in A$ with $0 < |x - c| < \delta$ and $0 < |x' - c| < \delta$, we have $|f(x) - f(x')| < \varepsilon$.

Proof

(i) \implies (iii) Suppose $\lim_{x \to c} f(x) = L \in \mathbb{R}$. Fixed any $\varepsilon > 0$,

we can find some $\delta > 0$, such that $|f(w) - L| < \frac{\varepsilon}{2}$ $\frac{c}{2}$ \forall *w* \in *A* with $0 < |w - c| < \delta$.

If $x, x' \in A$ with $0 < |x - c| < \delta$ and $0 < |x' - c| < \delta$, we have

$$
\left|f(x) - f(x')\right| \le |f(x) - L| + \left|f(x') - L\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
$$

 $(iii) \implies (ii)$ Suppose *f* satisfy (iii).

Pick arbitrary sequence $\{x_n\}$ with $x_n \in A \setminus \{c\}$ $\forall n \in \mathbb{N}$ and $\lim_{n} x_n = c$.

Fixed any $\epsilon > 0$, by assumption, we can find some $\delta > 0$, s.t.

 $\forall x, x' \in A \text{ with } 0 < |x - c| < \delta \text{ and } 0 < |x' - c| < \delta, \text{ we have } |f(x) - f(x')| < \varepsilon.$ (*)

For this $\delta > 0$, by convergence and assumption of $\{x_n\}$, $\exists N \in \mathbb{N}$, s.t. $0 < |x_n - c| < \delta \forall n \ge N$.

By (*), we have $|f(x_n) - f(x_m)| < \varepsilon \ \forall \ n, m \ge N$.

Hence, $\{f(x_n)\}\$ is Cauchy and so Convergent by Cauchy Convergent Theorem for Sequence.

 $(ii) \implies (i)$ Suppose *f* satisfy (ii).

Claim: $\lim_{n} f(x_n)$ is SAME whenever {*x_n*} is a sequence with *x_n* ∈ *A* \ {*c*} ∀ *n* ∈ ℕ and $\lim_{n} x_n = c$.

Proof Let $\{x_n\}$, $\{y_n\}$ be two sequences satisfying

 $x_n, y_n \in A \setminus \{c\} \forall n \in \mathbb{N}$ and $\lim_{n} x_n = c = \lim_{n} y_n$. Suppose $\lim_{n} f(x_n) = L$ and $\lim_{n} f(y_n) = L'$ for some $L, L' \in \mathbb{R}$. Now, we construct a new sequence $\{z_n\}$ by $z_{2n} = x_n$ and $z_{2n-1} = y_n$ for any $n \in \mathbb{N}$. Then $z_n \in A \setminus \{c\}$ $\forall n \in \mathbb{N}$ and $\lim_{n \to \infty} z_n = 0$. (I left this statement as exercise.) Hence, $\lim_{n} f(z_n) = L''$ for some $L'' \in \mathbb{R}$. Note that $\{f(x_n)\}, \{f(y_n)\}$ are subsequences of $\{f(z_n)\}$ and so we must have $L = L'' = L'$.

By the claim, ∃ $L \in \mathbb{R}$, s.t. for any sequence $\{x_n\}$ with $x_n \in A \setminus \{c\}$ ∀ $n \in \mathbb{N}$ and $\lim_{n} x_n = c$,

we have $\lim_{n} f(x_n) = L$. (**)

Suppose it were true that $\lim_{x \to c} f(x)$ does not exist. In particular, $\lim_{x \to c} f(x) \neq L$.

 $\exists \varepsilon_0 > 0$, s.t. $\forall n \in \mathbb{N}, \exists a_n \in A \text{ with } 0 < |a_n - c| < \frac{1}{n}$ $\frac{1}{n}$, s.t. $|f(a_n) - L| \geq \varepsilon_0$. Note $\{a_n\}$ is a sequence with $a_n \in A \setminus \{c\}$ and $\lim_{n} a_n = c$ BUT $\lim_{n} f(a_n) \neq L$. Contradiction with (**). Hence, $\lim_{x \to c} f(x) = L \in \mathbb{R}$.

4 Continuous Function

4.1 Basic Property

4.1.1 Definition

Let *f* : $A \rightarrow \mathbb{R}$, *A* non-empty subset of \mathbb{R} , let *c* ∈ *A*.

 f is said to be continuous at c if

 $\forall \varepsilon > 0, \exists \delta > 0$, s.t. $\forall x \in A \text{ with } |x - c| < \delta$, we have $|f(x) - f(c)| < \varepsilon$.

Also, *f* is said to be continuous on *A* if *f* is continuous at every $c \in A$.

Remark

- (i) c must need to be in A , otherwise, $f(c)$ is NOT well-defined.
- **(ii)** It is NOT necessary for *𝑐* to be a cluster point of *𝐴*.
- **(iii)** If c is not a cluster point of \vec{A} (we called it isolated point), then f is automatically continuous at c .
- (iv) If c is a cluster point of A , then f is continuous at c is equivalent to

$$
\lim_{\substack{x \to c \\ x \in A}} f(x) = f(c),
$$

but in this course, please do NOT use this equivalent definition.

4.1.2 Property

If $f, g : A \to \mathbb{R}$ are continuous at $c \in A$, then fg is also continuous at c .

Proof

Suppose $f, g : A \to \mathbb{R}$ are continuous at $c \in A$.

<u>Claim:</u> *g* is locally bounded at 0. i.e. ∃ *M* > 0, δ_1 > 0, s.t. $|g(x)| < M$ ∀ *x* ∈ *A* with $|x - c| < \delta_1$.

Proof Take $\varepsilon_0 = 1$, since *g* is continuous at *c*, $\exists \delta_1 > 0$, s.t. $|g(x) - g(c)| < \varepsilon_0 = 1 \,\forall \, x \in A \text{ with } |x - c| < \delta_1.$ That is, $f(x) <$ Max $\{ |g(c) + 1|, |g(c) - 1| \}$ ${ }$ = : *M* ∀ *x* ∈ *A* with $|x - c| < \delta_1$.

Fixed any $\epsilon > 0$, by f, g continuous at c, we can find

 $\delta_2 > 0$, s.t. $\forall x \in A$ with $|x - c| < \delta_2$, we have $|f(x) - f(c)| < \frac{\varepsilon}{2\Lambda}$ $\frac{\epsilon}{2M}$ and $\delta_3 > 0$, s.t. $\forall x \in A \text{ with } |x - c| < \delta_3$, we have $|g(x) - g(c)| < \frac{\varepsilon}{2|f(c)|}$ $\frac{c}{2|f(c)|+1}.$

Take $\delta = \text{Min} \{ \delta_1, \delta_2, \delta_3 \} > 0$, if $x \in A$ with $|x - c| < \delta$, we have

$$
\begin{aligned} \left| f(x)g(x) - f(c)g(c) \right| &\leq \left| f(x) - f(c) \right| \left| g(x) \right| + \left| f(c) \right| \left| g(x) - g(c) \right| \\ &\leq \frac{\varepsilon}{2M} \cdot M + \left| f(c) \right| \cdot \frac{\varepsilon}{2 \left| f(c) \right| + 1} \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}
$$

Hence, fg is also continuous at c .

4.1.3 Property

Let $A, B \subset \mathbb{R}$.

If $f : B \to \mathbb{R}, g : A \to B$ are continuous functions, then $f \circ g$ is also continuous on A.

Proof

Fixed any $\varepsilon > 0$, Fixed any $c \in A$, by continuity of f,

we can find
$$
\eta > 0
$$
, s.t. $\forall y \in B$ with $|y - g(c)| < \eta$, we have $|f(y) - f(g(c))| < \varepsilon$. (*)

For this $\eta > 0$, by continuity of *g*,

we can find $\delta > 0$, s.t. $\forall x \in A$ with $|x - c| < \delta$, we have $|g(x) - g(c)| < \eta$.

Combine with (*), we know $\forall x \in A$ with $|x - c| < \delta$, we have $|f(g(x)) - f(g(c))| < \varepsilon$.

Hence, *f* ∘*g* is also continuous on *A*.

Question

Let $\emptyset \neq A \subset \mathbb{R}$, Let $f : \mathbb{R} \to \mathbb{R}$ be the distance function from A. That is,

$$
f(x) := \text{Inf}\{ |x - a| : a \in A \}.
$$

- (a) Show $f(x) \le |x y| + f(y)$ for any $x, y \in \mathbb{R}$.
- **(b)** Show *𝑓* is continuous on ℝ.
- **(c)** Let $c \notin A$. Show c is a cluster point of A if and only if $f(c) = 0$.
- **(d)** Can we drop the assumption $c \notin A$ in part (c)?

Answer

(a) Pick any $x, y \in \mathbb{R}$, $a \in A$, by triangle inequality, $|x - a| \le |x - y| + |y - a|$.

By taking infimum over $a \in A$ on both sides, since infimum preserves order, we have

$$
f(x) \le |x - y| + f(y).
$$

(b) Fixed any $\epsilon > 0$, $x \in \mathbb{R}$, take $\delta = \epsilon > 0$. If $y \in \mathbb{R}$ with $|x - y| < \delta$, by (a), we have $f(x) - f(y) \le |x - y|$ and $f(y) - f(x) \le |x - y|$, and so $|f(x) - f(y)| \le |x - y| < \delta = \varepsilon$.

Hence, *f* is continuous at every point $x \in \mathbb{R}$. Hence, *f* is continuous on \mathbb{R} .

(c)(\implies) Suppose *c* ∉ *A* is a cluster point of *A*. Fixed any $\epsilon > 0$,

We can find some $a \in A$, such that $0 \leq |c - a| < \varepsilon$.

By definition of Inf, $f(c) = 0$.

(←) Suppose $f(c) = 0$, $c \notin A$. Fixed any $\epsilon > 0$, by definition of *f* (i.e. by definition of Inf), we can find some $a \in A$, such that $|c - a| < \varepsilon$. Note that $a \neq c$ since $a \in A$ and $c \notin A$, that is, $\forall \varepsilon > 0$, $\exists a \in A \setminus \{c\}$, such that $|c - a| < \varepsilon$.

Hence, *c* is a cluster point of *A*.

(d) NO. Consider the counter example $A = \{0\}$, then $f(0) = 0$ but 0 is NOT a cluster point of *A*.

4.2 Uniform Continuity

4.2.1 Definition

Let $\emptyset \neq A \subset \mathbb{R}$ and $f : A \to \mathbb{R}$ be a function.

f is said to be Uniformly Continuous on A if

$$
\forall \varepsilon > 0, \exists \delta > 0, \text{ s.t. } \forall x, y \in A \text{ with } |x - y| < \delta, \text{ we have } |f(x) - f(y)| \le \varepsilon.
$$

Remark

- (i) The uniform continuity of f is defined on some set but not a point.
- **(ii)** If f is uniformly continuous on A , then f is continuous on A .

4.2.2 Example

- **(a)** $f(x) = x$ is uniformly continuous on ℝ.
- **(b)** $f(x) = x^2$ is uniformly continuous on [*a*, *b*] for any $a, b \in \mathbb{R}$ with $a < b$. However, $f(x) = x^2$ is NOT uniformly continuous on ℝ but it is continuous on ℝ.

(c) $f(x) = \frac{1}{x}$ is uniformly continuous on [*a*, *b*] for any $a, b \in \mathbb{R}$ with $0 < a < b$.

However, $f(x) = \frac{1}{x}$ is NOT uniformly continuous on $(0, b]$ but it is continuous on $(0, b]$ for any $b > 0$.

4.2.3 Uniform Continuity Theorem

Let $f : [a, b] \to \mathbb{R}$ be a function for some $a, b \in \mathbb{R}$ with $a < b$.

Then *f* is uniformly continuous on [a , b] if and only if f is continuous on [a , b].

4.2.4 Question

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function on \mathbb{R} .

- (a) If $\lim_{x \to +\infty} f(x) = L \in \mathbb{R}$ and $\lim_{x \to -\infty} f(x) = L' \in \mathbb{R}$, then *f* is uniformly continuous on R.
- **(b)** If *f* is periodic with period $p > 0$, that is

$$
f(x + p) = f(x) \text{ for any } x \in \mathbb{R},
$$

then *f* is uniformly continuous on ℝ.

Answer

(a) Fixed any $\varepsilon > 0$, by $\lim_{x \to +\infty} f(x) = L \in \mathbb{R}$ and $\lim_{x \to -\infty} f(x) = L' \in \mathbb{R}$,

$$
\exists M > 0, \text{s.t.} |f(x) - L| < \frac{\varepsilon}{4} \forall x \ge M \quad (*) \text{ and}
$$
\n
$$
\exists M' < 0, \text{s.t.} |f(x) - L'| < \frac{\varepsilon}{4} \forall x \le M' \quad (*)
$$

Note that *f* is continuous on $[M', M]$,

and hence f is uniformly continuous on $[M', M]$ by Uniform Continuity Theorem.

Therefore,
$$
\exists \delta' > 0
$$
, s.t. $\forall x, y \in [M', M]$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \frac{\varepsilon}{2}$ (***).

Let $\delta := \text{Min}\{\delta', M - M'\} > 0$.

Now, pick any $x, y \in \mathbb{R}$ with $|x - y| < \delta$, WLOG, assume $x \leq y$,

There are five cases:

- (**Case 1**) Suppose *x*, *y* ∈ [*M'*, *M*], then by (***), $|f(x) f(y)| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} < \varepsilon$.
- **(Case 2)** Suppose $x, y \leq M'$, then by (**), we have

$$
\left|f(x) - f(y)\right| \le \left|f(x) - L'\right| + \left|f(y) - L'\right| < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2} < \varepsilon.
$$

(Case 3) Suppose $x, y \geq M$, then by $(*)$, we have

$$
\left|f(x) - f(y)\right| \le \left|f(x) - L\right| + \left|f(y) - L\right| < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2} < \varepsilon.
$$

- **(Case 4)** Suppose $x \leq M' \leq y$, then $y < M$, then using (***) and case 2, we have $|f(x) - f(y)| \le |f(x) - f(M')| + |f(M') - f(y)| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} + \frac{\varepsilon}{2}$ $\frac{\epsilon}{2} = \epsilon.$
- **(Case 5)** Suppose $x \leq M \leq y$, then $x > M'$, then using (***) and case 3, we have $|f(x) - f(y)| \le |f(x) - f(M)| + |f(M) - f(y)| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2} + \frac{\varepsilon}{2}$ $\frac{\epsilon}{2} = \epsilon.$

In any cases, we must have $|f(x) - f(y)| < \varepsilon$.

Hence, *f* is uniformly continuous on ℝ.

(b) Fixed any $\epsilon > 0$, note that *f* is continuous on [0, *p*],

hence *f* is uniformly continuous on [0, *p*] by Uniform Continuity Theorem.

Hence,
$$
\exists \delta' > 0
$$
, s.t. $\forall x, y \in [0, p]$ with $|x - y| < \delta'$, we have $|f(x) - f(y)| < \frac{\varepsilon}{2}$. (*)

Let $\delta := \text{Min}\{\delta', p\} > 0$.

Pick any $x, y \in \mathbb{R}$ with $|x - y| < \delta$, WLOG, assume $x \leq y$, by division algorithm,

 $\exists! n, m \in \mathbb{Z}, s, t \in [0, p), \text{ s.t. } x = np + s \text{ and } y = mp + t.$

Note that $m > n$ and $-p < t - s < p$.

Note that $p > \delta > |x - y| = v - x = (m - n)p + (t - s) > (m - n - 1)p$.

Since $p > 0$, we have $0 \le m - n < 2$, since $m, n \in \mathbb{Z}$, $m - n$ is either 0 or 1.

(Case 1) Suppose $m - n = 0$, that is $m = n$, so $|s - t| = |x - y| < \delta \le \delta'$, then by f is p −periodic and (*), we have

$$
\left|f(x) - f(y)\right| = \left|f(np+s) - f(mp+s)\right| = \left|f(s) - f(t)\right| < \frac{\varepsilon}{2} < \varepsilon.
$$

(Case 2) Suppose $m - n = 1$,

then $|p - s| = p - s \le t + p - s = |t + p - s| = |x - y| < \delta \le \delta'$, $\text{and } |t - 0| = t \leq t + p - s = |t + p - s| = |x - y| < \delta \leq \delta',$ then by f is p −periodic and (*), we have

$$
\begin{aligned} \left| f(x) - f(y) \right| &\leq \left| f(np + s) + f(np + p) \right| + \left| f(np + p) + f(np + p + t) \right| \\ &= \left| f(s) - f(p) \right| + \left| f(0) - f(t) \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}
$$

In any cases, $|f(x) - f(y)| < \varepsilon$.

Hence, *f* is uniformly continuous on ℝ.

4.3 Maximum Minimum Value Theorem

4.3.1 Main Statement

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on $[a, b]$ for some $a, b \in \mathbb{R}$ with $a < b$.

Then *f* attains an global maximum AND global minimum on [*a*, *b*].

That is, $\exists x^*, x_* \in [a, b]$, s.t. $f(x_*) \le f(x) \le f(x^*) \forall x \in [a, b]$.

4.3.2 Question

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function on \mathbb{R} .

(a) If $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = L \in \mathbb{R}$,

then *𝑓* attains an global maximum OR global minimum on ℝ.

(b) With same assumption of (a),

could *𝑓* attains both global maximum AND global minimum on ℝ?

(c) Could the assumption of (a) be replaced by $\lim_{x \to +\infty} f(x) = L \in \mathbb{R}$, $\lim_{x \to -\infty} f(x) = L' \in \mathbb{R}$?

answer

Let $g : \mathbb{R} \to \mathbb{R}$ defined by $g(x) = f(x) - L \forall x \in \mathbb{R}$.

Note that *g* is continuous of ℝ with $\lim_{x \to +\infty} g(x) = \lim_{x \to -\infty} g(x) = 0$.

There are three cases:

(Case 1) Suppose $g(x) = 0 \forall x \in \mathbb{R}$,

that is *g* is a zero constant function,

then global maximum of $g =$ global minimum of $g = 0$ (attains at everywhere). Hence, global maximum of $f =$ global minimum of $f = L$ (attains at everywhere).

(Case 2) Suppose $g(c) > 0$ for some $c \in \mathbb{R}$.

Take
$$
\varepsilon_0 = \frac{g(c)}{2} > 0
$$
, by $\lim_{x \to +\infty} g(x) = \lim_{x \to -\infty} g(x) = 0 \in \mathbb{R}$,

we can find $M' < 0$ and $M > 0$, such that $|g(x)| < \varepsilon_0 = \frac{g(c)}{2}$ $\frac{1}{2}$ $\forall x \geq M$ or $x \leq M'$. In particular, $g(x) \leq \frac{g(c)}{2}$ $\frac{1}{2} \forall x \geq M \text{ or } x \leq M'$. (*)

Also, we know $c \in [M', M]$ since $x = c$ does not satisfy $|g(x)| < \frac{g(c)}{2}$ $\frac{y}{2}$.

Note that *g* is continuous on [M', M], by Maximum Minimum Value Theorem, there exist some $x^* \in [M', M] \subset \mathbb{R}$, such that $g(x^*) \ge g(x) \forall x \in [M', M]$. (**) If $x \ge M$ or $x \le M'$, combine (*) and (**), we have

$$
g(x) \le \frac{g(c)}{2} < g(c) \le g(x^*).
$$

This means $g(x^*) \ge g(x) \forall x \in \mathbb{R}$,

that is $f(x^*) \ge f(x)$ $\forall x \in \mathbb{R}$ by adding *L* on both sides.

Hence, f attain a global maximum at x^* .

(Case 3) Suppose $g(c) < 0$ for some $c \in \mathbb{R}$.

Then $-g(c) > 0$ for that $c \in \mathbb{R}$, apply (case 2) on $-g$,

there exist some $x_* \in \mathbb{R}$, such that $-g(x_*) \geq -g(x) \forall x \in \mathbb{R}$.

That is, $g(x_*) \leq g(x) \forall x \in \mathbb{R}$ and

hence, $f(x_*) \le f(x) \forall x \in \mathbb{R}$ by adding *L* on both sides.

However, these *f* may not attain both global minimum and maximum.

Consider the counter example: $f(x) = \frac{1}{1 + x^2} \forall x \in \mathbb{R}$.

Note that *f* is well-defined continuous function on ℝ (since $1 + x^2 > 0 \forall x \in \mathbb{R}$)

and $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0.$

Also, f attains a global maximum 1 at $x = 0$.

However, if *f* attained a global minimum at $x = c \in \mathbb{R}$,

WLOG, assume $c > 0$, note that $f(c + 1) < f(c)$ which is a contradiction.

Hence, *f* does NOT attain a global minimum.

If the limit of *f* as *x* tends to $\pm \infty$ is NOT same, the result may fail.

Consider the counter example:
$$
f(x) = \begin{cases} 1 - \frac{1}{1 + x^2}, & \text{if } x \ge 0 \\ \frac{1}{1 + x^2} - 1, & \text{if } x < 0 \end{cases}
$$

Note that *f* is continuous on ℝ. (please check it at least for $x = 0$ yourself!) Also, $\lim_{x \to +\infty} f(x) = 1$ and $\lim_{x \to -\infty} f(x) = -1$.

By same skill above, consider *f* is increasing on ℝ, (I left it as exercise.)

f does NOT attain ANY global maximum and minimum.

4.4 Intermediate Value Theorem

4.4.1 Main Statement

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on $[a, b]$ for some $a, b \in \mathbb{R}$ with $a < b$. for any $k \in \mathbb{R}$ between $f(a)$ and $f(b)$, there exist $\xi \in [a, b]$, such that $f(\xi) = k$.

4.4.2 Question

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function on \mathbb{R} .

If $\lim_{x \to +\infty} f(x) = +\infty$ and $\lim_{x \to -\infty} f(x) = -\infty$, then *f* is surjective.

Answer

Pick any $y \in \mathbb{R}$,

by $\lim_{x \to +\infty} f(x) = +\infty$ and $\lim_{x \to -\infty} f(x) = -\infty$, we can find $M' < 0$ and $M > 0$,

such that $f(x) > y \forall x \geq M$ and $f(x) < y \forall x \leq M'$.

In particular, $f(M) > y > f(M')$.

By Intermediate Value Theorem, we can find $x_0 \in (M', M) \subset \mathbb{R}$ such that $y = f(x_0)$.

That is, $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, \text{ s.t. } y = f(x)$.

Hence, $f : \mathbb{R} \to \mathbb{R}$ is surjective.