MATH 2050B 2017-18 Mathematical Analysis I Tutorial Notes Ng Hoi Dong

1 The Real Numbers

1.1 Axioms of Real Numbers

- (A1) $a + b = b + a, \forall a, b \in \mathbb{R}$,
- (A2) $(a+b) + c = (a + (b + c)), \forall a, b, c \in \mathbb{R},$
- (A3) $\exists 0 \in \mathbb{R}$, s.t. $0 + a = a = a + 0 \forall a \in \mathbb{R}$,
- (A4) $\forall a \in \mathbb{R}, \exists b \in \mathbb{R}, \text{ s.t. } a + b = 0 = b + a$. Then we denote this b as -a,
- (M1) $a \cdot b = b \cdot a \forall a, b \in \mathbb{R}$.
- (M2) $(a \cdot b) \cdot c = a \cdot (b \cdot c) \forall a, b, c \in \mathbb{R},$
- (M3) $\exists 1 \in \mathbb{R}$, s.t. $1 \cdot a = a = a \cdot 1 \forall a \in \mathbb{R}$,
- (M4) $\forall a \in \mathbb{R} \setminus \{0\}, \exists b \in \mathbb{R}, \text{ s.t. } a \cdot b = 1 = b \cdot a$. Then we denote this b as $\frac{1}{a}$,
- **(D1)** $a \cdot (b+c) = a \cdot b + a \cdot c \ \forall a, b, c \in \mathbb{R}$,
- **(D2)** $0 \neq 1$,
- (O1) Given $a, b \in \mathbb{R}$, there are one and the only one of the following case will occur:
 - $\bullet a = b \quad \bullet a < b \quad \bullet a > b$
- (O2) if a > b for some $a, b \in \mathbb{R}$, then $a + c > b + c \forall c \in \mathbb{R}$,
- (O3) if a > b for some $a, b \in \mathbb{R}$, then $ac > bc \forall c > 0$,
- **(O4)** if a > b and b > c for some $a, b, c \in \mathbb{R}$, then a > c.

(Completeness) Every bounded above nonempty subset in \mathbb{R} has a Supremum in \mathbb{R} .

1.2 Properties of Real Numbers

- (i) 0, 1 are unique, -a is unique for each $a \in \mathbb{R}$, $\frac{1}{a}$ is unique for each $a \in \mathbb{R} \setminus \{0\}$,
- (ii) if a + c = b + c for some $a, b, c \in \mathbb{R}$, then a = b.
- (iii) $a \cdot 0 = 0 \forall a \in \mathbb{R}$,
- (iv) $-a = (-1) \cdot a \forall a \in \mathbb{R}$,
- (v) $-(-a) = a \forall a \in \mathbb{R},$
- (vi) $(-a)(-b) = a \cdot b \forall a, b \in \mathbb{R}$,
- (vii) if a > b for some $a, b \in \mathbb{R}$, then -a < -b,
- (viii) if a > b for some $a, b \in \mathbb{R}$, then $ca < cb \forall c < 0$,
 - (ix) $a^2 := a \cdot a > 0 \forall a \in \mathbb{R} \setminus \{0\}.$
 - (**x**) 1 > 0,
- (xi) $2 > 1 > \frac{1}{2} > 0$,
- (xii) if $a \in \mathbb{R}$ satisfies $0 \le a < \varepsilon \ \forall \ \varepsilon > 0$, then a = 0.

Proof

- (i) Suppose 0' ∈ R also satisfies (A3), then by (A3) of 0 and 0', we have 0 = 0 + 0' = 0'.
 The other cases are similar, so I left them as exercise.
- (ii) Note that

$$a \stackrel{(A3)}{=} a + 0$$

$$\stackrel{(A4)}{=} a + [c + (-c)]$$

$$\stackrel{(A2)}{=} (a + c) + (-c)$$
assumption
$$= (b + c) + (-c)$$

$$\stackrel{(A2)}{=} b + [c + (-c)]$$

$$\stackrel{(A4)}{=} b + 0$$

$$\stackrel{(A3)}{=} b.$$

(iii) Note that $0 + a \cdot 0 \stackrel{(A3)}{=} a \cdot 0 \stackrel{(A3)}{=} a \cdot (0 + 0) \stackrel{(D1)}{=} a \cdot 0 + a \cdot 0$, by (ii), we have $a \cdot 0 = 0$.

(iv) Note that

$$(-1) \cdot a \stackrel{(A3)}{=} (-1) \cdot a + 0$$

$$\stackrel{(A4),(A2)}{=} [(-1) \cdot a + a] + (-a)$$

$$\stackrel{(M3)}{=} [(-1) \cdot a + 1 \cdot a] + (-a)$$

$$\stackrel{(D1)}{=} (-1 + 1) \cdot a + (-a)$$

$$\stackrel{(A4)}{=} 0 \cdot a + (-a)$$

$$\stackrel{(iii)}{=} 0 + (-a)$$

$$\stackrel{(A3)}{=} -a$$

(v) By (A4), a + (-a) = 0 = (-a) + a, since -(-a) is unique by (i), we have -(-a) = a by (A4).

(vi) Note that

$$(-a)(-b) \stackrel{(iv)}{=} [(-1) \cdot a][(-1) \cdot b]$$

$$\stackrel{(M1),(M2)}{=} [(-1) \cdot (-1)](a \cdot b)$$

$$\stackrel{(iv)}{=} [-(-1)](a \cdot b)$$

$$\stackrel{(v)}{=} 1 \cdot (a \cdot b)$$

$$\stackrel{(M3)}{=} a \cdot b$$

(vii) Note that

$$a > b$$

$$0 \stackrel{(A4)}{=} a + (-a) \stackrel{(O2)}{>} b + (-a) \stackrel{(A1)}{=} -a + b$$

$$-b \stackrel{(A3)}{=} 0 + (-b) \stackrel{(O2)}{>} (-a + b) + (-b) \stackrel{(A2),(A4)}{=} -a + 0 \stackrel{(A3)}{=} -a$$

(viii) Fixed any c < 0, by (vii), -c > 0. Hence, -ca > -cb by (O3), so ca < cb by (vii) and (v).

(ix) By (O1), there are two cases:

(Case 1) Suppose a > 0, then $a^2 \stackrel{(O3)}{>} a \cdot 0 \stackrel{(iii)}{=} 0$. (Case 2) Suppose a < 0, then $a^2 \stackrel{(viii)}{>} a \cdot 0 \stackrel{(iii)}{=} 0$.

(x) Suppose it were not true that 1 > 0, By (O1) and (D2), we have 1 < 0. By (M3), (vi), (ix), we have $1 = 1 \cdot 1 = (-1)^2 > 0$, which contradict with 1 < 0 by (O1). Therefore, 1 > 0.

(xii) Note that $2 := 1 + 1 \stackrel{(O2),(x)}{>} 1 + 0 \stackrel{(A3)}{=} 1$. Hence, 2 > 0 by (O4). So $1 \stackrel{(M4)}{=} \frac{1}{2} \cdot 2 \stackrel{(O3)}{>} \frac{1}{2} \cdot 1 \stackrel{(M3)}{=} \frac{1}{2}$. Suppose it were not true that $\frac{1}{2} > 0$. By (O1), there are two cases: (Case 1) Suppose $\frac{1}{2} = 0$, then $1 \stackrel{(A4)}{=} 2 \cdot \frac{1}{2} \stackrel{(iii)}{=} 0$, which contradict with (D2). (Case 2) Suppose $\frac{1}{2} < 0$, then $1 \stackrel{(A4)}{=} 2 \cdot \frac{1}{2} \stackrel{(O3)}{<} 2 \cdot 0 \stackrel{(iii)}{=} 0$, which contradict with (x) and (O1). Hence, $\frac{1}{2} > 0$.

(xii) Suppose it were true that $a \neq 0$, by (O1) and assumption, a > 0,

Then, $a \stackrel{(M3)}{=} a \cdot 1 \stackrel{(\text{xi}),(O3)}{>} a \cdot \frac{1}{2} \stackrel{(\text{xi}),(O3)}{>} 0$, which contradict with the assumption if $\varepsilon = a \cdot \frac{1}{2}$. Hence, a = 0.

1.3 Bernoulli's Inequality

If x > -1, then $(1 + x)^n \ge 1 + nx$ for any $n \in \mathbb{N}$.

Proof

Use Induction on n, it is obvious when n = 1.

Suppose the inequality holds for some $n = k \in \mathbb{N}$, i.e. $(1 + x)^k \ge 1 + kx$. Then

$$(1+x)^{k+1} = (1+x)(1+x)^k$$

$$\geq (1+x)(1+kx)$$
By Induction Hypothesis

$$= 1+kx+x+kx^2$$

$$\geq 1+(k+1)x$$
since $x^2 \ge 0$,

the statement is true when n = k + 1,

by principal of M.I., $(1 + x)^n \ge 1 + nx \forall n \in \mathbb{N}$.

Remark

With similar skill, we have if x > -1, then $(1 + x)^n \ge 1 + nx + \frac{1}{2}n(n-1)x^2$ for any $n \in \mathbb{N}$ with $n \ge 2$.

1.4 Bounded Above and Below, Sup and Inf, Max and Min

1.4.1 Definition

Let $\emptyset \neq S \subset \mathbb{R}$. Then

(i) *S* is said to be bounded above (below resp.) if $\exists u \in \mathbb{R}$, s.t. $s \le u \forall s \in S$ ($s \ge u \forall s \in S$ resp.). In this case, *u* is called an upper (lower resp.) bound of *S*.

Also, S is said to be bounded if S is both bounded above and below.

- (ii) Suppose S bounded above, $u \in \mathbb{R}$ is said to be a supremum of S, or we denote u as SupS if
 - (a) u is an upper bound of S,
 - (b) if v is another upper bound of S, then $v \ge u$.
- (iii) Suppose S bounded below, $l \in \mathbb{R}$ is said to be an infimum of S, or we denote l as InfS if
 - (a) l is a lower bound of S,
 - (b) if k is another lower bound of S, then $l \ge k$.
- (iv) Suppose S bounded above (below resp.), $u \in \mathbb{R}$ is said to be maximum (minimum resp.) of S, or we denote u as MaxS (MinS resp.) if
 - (a) $u \in S$,
 - (b) $u \ge s \forall s \in S (s \ge u \forall s \in S \text{ resp.}).$

remark

- MaxS, MinS may not exist even if S is bounded. (see example below)
- Sup*S*, Inf*S*, Max*S*, Min*S* is unique if they exist. (Why?)

1.4.2 Property (equivalent definition of Sup)

Let *u* be an upper bound of $\emptyset \neq S \subset \mathbb{R}$.

Then $u = \operatorname{Sup} S$ if and only if $\forall \varepsilon > 0, \exists s_0 \in S$, s.t. $s_0 > u - \varepsilon$.

Idea

A number is NOT an upper bound of S if it (strictly) less than u.

Proof

(\Leftarrow) Fixed any v be an upper bound of S. Suppose it were true that v < u.

Take $\varepsilon = u - v > 0$, by assumption, $\exists s_0 \in S$, s.t. $s_0 > u - \varepsilon = v$.

So v is NOT an upper bound, contradiction arise. Hence, $v \le u$, so u = SupS.

 (\Longrightarrow) Fixed any $\varepsilon > 0$, note that $u - \varepsilon < u$.

By def of Sup, $u - \varepsilon$ is NOT an upper bound of S.

Therefore, $\exists s_0 \in S$, s.t. $s_0 > u - \varepsilon$.

1.4.3 Corollary

If M := MaxS exists in \mathbb{R} , then M = SupS.

Proof

Note that $M > M - \varepsilon \forall \varepsilon > 0$ and $M \in S$, the result follow by last prop.

Remark

Similarly, we have the following property:

Let *l* be a lower bound of $\emptyset \neq S \subset \mathbb{R}$.

Then l = InfS if and only if $\forall \epsilon > 0, \exists s_0 \in S$, s.t. $s_0 < l + \epsilon$.

1.4.4 Example

Let $S = (-\infty, 1) := \{x \in \mathbb{R} : x < 1\}$, Show that S has no maximum and SupS = 1.

Answer

Suppose *S* has the maximum *M*, then $M \in S$, i.e. M < 1. Let $M' = M + \frac{1}{2}(1 - M)$. Since 1 - M > 0 and $\frac{1}{2} > 0$, we have M' > M. Since 1 - M > 0 and $\frac{1}{2} < 1$, we have M' < M + (1 - M) = 1. This means $M' \in S$ with M' > M, which contradict with *M* is the maximum of *S*. So *S* has no maximum.

By def of *S*, we have $1 > s \forall s \in S$. Hence, *S* bounded above with an upper bound 1. By Completeness Axiom of \mathbb{R} , Sup*S* exists in \mathbb{R} . Fixed any $\varepsilon > 0$, define $s_0 = 1 - \frac{\varepsilon}{2}$. Since $\varepsilon > 0$ and $\frac{1}{2} > 0$, so $s_0 = 1 - \frac{\varepsilon}{2} < 1$. Since $\varepsilon > 0$ and $\frac{1}{2} < 1$, so $s_0 = 1 - \frac{\varepsilon}{2} > 1 - \varepsilon$. Therefore, $s_0 \in S$ with $s_0 > 1 - \varepsilon$, by prop 1.4.2, Sup*S* = 1.

1.4.5 Property (Sup and subset)

Suppose $\emptyset \neq A \subset B \subset \mathbb{R}$, and *A*, *B* bounded above, then Sup*A* \leq Sup*B*.

Proof

Let $u = \operatorname{Sup} B$. Then $u \ge b \forall b \in B$.

In fact, since $A \subset B$, so $u \ge a \forall a \in A$, i.e. u is an upper bound of A.

By definition of Sup, $\operatorname{Sup} B = u \ge \operatorname{Sup} A$.

Challenging Question

Please define SupØ and InfØ and explain why.

1.4.6 Property (Sup and $+, \cdot$)

Let *S*, *T* be an bounded above subset of \mathbb{R} .

We define $a + S := \{a + s | s \in S\}$ and $aS := \{as | s \in S\}$ for any $a \in \mathbb{R}$.

Also, we define $S + T := \{s + t | s \in S, t \in T\}$.

Then

- (i) $\operatorname{Sup}(a+S) = a + \operatorname{Sup}S \forall a \in \mathbb{R},$
- (ii) $\operatorname{Sup}(aS) = a\operatorname{Sup}S \forall a > 0$,
- (iii) $Inf(aS) = aSupS \forall a < 0$. In particular, Inf(-S) = -SupS,
- (iv) S + T is bounded above with Sup(S + T) = SupS + SupT.

Proof

(i) Let u = SupS. By def of Sup, $u > s \forall s \in S$.

Hence $a + u > as \forall s \in S$, i.e. $a + u > r \forall r \in a + S$.

Hence a + S is bounded above with an upper bound a + u.

Using equivalent definition of Sup,

 $\forall \varepsilon > 0, \exists s_0 \in S, \text{ s.t. } s_0 > u - \varepsilon.$

Then, $\forall \varepsilon > 0$, $\exists s_0 \in S$, s.t. $a + s_0 > a + u - \varepsilon$. Then, $\forall \varepsilon > 0$, $\exists r_0 \in a + S$, s.t. $r_0 > a + u - \varepsilon$. Hence, $\operatorname{Sup}(a + S) = a + u = a + \operatorname{Sup}S$.

- (ii) Let $u = \operatorname{Sup} S$, a > 0. By def of Sup, $u > s \forall s \in S$. Hence $au > as \forall s \in S$, i.e. $au > r \forall r \in aS$. Hence aS is bounded above with an upper bound au. Using equivalent definition of Sup, $\forall \varepsilon > 0, \exists s_0 \in S$, s.t. $s_0 > u - \frac{\varepsilon}{a}$. Note that $\frac{\varepsilon}{a} > 0$. Then, $\forall \varepsilon > 0, \exists s_0 \in S$, s.t. $as_0 > au - \varepsilon$. Then, $\forall \varepsilon > 0, \exists r_0 \in aS$, s.t. $r_0 > au - \varepsilon$. Hence, $\operatorname{Sup}(aS) = au = a\operatorname{Sup}S$.
- (iii) Let $u = \operatorname{Sup} S$. By def of Sup, $u > s \forall s \in S$.

Hence
$$-u < -s \forall s \in S$$
, i.e. $-u < r \forall r \in -S$.

Hence -S is bounded below with a lower bound -u.

Using equivalent definition of Sup and Inf,

 $\forall \, \varepsilon > 0, \; \exists \; s_0 \in S, \, \text{s.t.} \; s_0 > u - \varepsilon.$

Then,
$$\forall \epsilon > 0, \exists s_0 \in S$$
, s.t. $-s_0 < u + \epsilon$.

Then,
$$\forall \epsilon > 0$$
, $\exists r_0 \in -S$, s.t. $r_0 < u + \epsilon$.

Hence, Inf(-S) = -u = -SupS.

(iv) Let $u = \operatorname{Sup} S$, $v = \operatorname{Sup} T$.

By def of Sup, $u > s \forall s \in S$ and $v > t \forall t \in T$.

Then $u + v > s + t \forall s \in S$, $t \in T$, i.e. $u + v > r \forall r \in S + T$.

Hence S + T is bounded above with an upper bound u + v.

Using equivalent definition of Sup,

 $\begin{aligned} \forall \, \varepsilon > 0, \ \exists \, s_0 \in S, \ t_0 \in T, \ \text{s.t.} \ s_0 > u - \frac{\varepsilon}{2} \ \text{and} \ t_0 > v - \frac{\varepsilon}{2}. \end{aligned}$ Then, $\forall \, \varepsilon > 0, \ \exists \, s_0 \in S, \ t_0 \in T, \ \text{s.t.} \ s_0 + t_0 > u + v - \varepsilon. \end{aligned}$ Then, $\forall \, \varepsilon > 0, \ \exists \, r_0 \in S + T, \ \text{s.t.} \ r_0 > u + v - \varepsilon. \end{aligned}$ Hence, $\operatorname{Sup}(S + T) = u + v = \operatorname{Sup}S + \operatorname{Sup}T. \end{aligned}$

1.4.7 Definition (Bounded, Sup, Inf of Real-Valued Function)

Given $f : D \to \mathbb{R}$ be a real-valued function defined on D. Then f is said to be bounded above (resp. below) if the set $\{f(x) \in \mathbb{R} : x \in D\}$ is bounded above (resp. below). An upper (resp. lower) bound of $\{f(x) \in \mathbb{R} : x \in D\}$ is also called an upper (resp. lower) bound of f on D. f is said to be bounded if f is both bounded above and below. If f is bounded above, We define Supremum of f on D by $\sup_{x \in D} f(x) = \sup\{f(x) \in \mathbb{R} : x \in D\}$. If f is bounded below, We define Infimum of f on D by $\inf_{x \in D} f(x) = \inf\{f(x) \in \mathbb{R} : x \in D\}$.

1.4.8 Property

Given $f, g: D \to \mathbb{R}$ be a real-valued functions defined on D.

Note that f + g is a real-valued functions defined on D

such that $(f + g)(x) = f(x) + g(x) \forall x \in D$. Then (i) If $f(x) \le g(x) \forall x \in D$, Then $\sup_{x \in D} f(x) \le \sup_{x \in D} g(x)$. (ii) $\sup_{x \in D} (f + g)(x) \le \sup_{x \in D} f(x) + \sup_{x \in D} g(x)$.

Proof

(i) Let $G = \sup_{x \in D} g(x)$.

Then by def of Sup, $G \ge g(x) \ge f(x) \forall x \in D$.

Then G is an upper bound of f on D.

By def of Sup, $\sup_{x \in D} g(x) = G \ge \sup_{x \in D} f(x)$.

(ii) Let
$$F = \sup_{x \in D} f(x)$$
, $G = \sup_{x \in D} g(x)$.

Then by def of Sup, $F \ge f(x)$ and $G \ge g(x) \forall x \in D$.

Hence $F + G \ge f(x) + g(x) = (f + g)(x) \forall x \in D$.

Then F + G is an upper bound of f + g on D.

By def of Sup,
$$\sup_{x \in D} f(x) + \sup_{x \in D} g(x) = F + G \ge \sup_{x \in D} (f + g)(x).$$

Remark

The following statements are false, think about the counter example.

(i) If
$$f(x) \le g(x) \forall x \in D$$
, Then $\sup_{x \in D} f(x) \le \inf_{x \in D} g(x)$.
(ii) $\sup_{x \in D} (f + g)(x) = \sup_{x \in D} f(x) + \sup_{x \in D} g(x)$.

1.5 Archimedean Property

1.5.1 Main Statement

 $\forall x \in \mathbb{R}, \exists n_x \in \mathbb{N}, \text{ s.t. } x \leq n_x.$

Equivalently, \mathbb{N} is NOT bounded above.

Proof

Suppose it were true that \mathbb{N} is bounded above.

By Completeness Axiom of \mathbb{R} , u :=Sup \mathbb{N} exists.

By equivalent definition of Sup, $\exists m \in \mathbb{N}$, s.t. m > u - 1, i.e. m + 1 > u.

By def of \mathbb{N} , $m + 1 \in \mathbb{N}$, but m + 1 > u,

which is a contradiction. Hence, \mathbb{N} is NOT bounded above.

1.5.2 Corollary

$$\ln\left\{\frac{1}{n}:n\in\mathbb{N}\right\}=0.$$

Equivalently, $\forall \epsilon > 0, \exists n \in \mathbb{N}$, s.t. $0 < \frac{1}{n} < \epsilon$.

Remark

This Corollary is sometimes referred to as the Archimedean Property.

Proof

Note that
$$\frac{1}{n} > 0 \ \forall \ n \in \mathbb{N}$$
, so $\left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ bounded below with a lower bound 0.
By Completeness Axiom of \mathbb{R} , $w := \operatorname{Inf} \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ exist in \mathbb{R} .
By def of Inf, $w \ge 0$.
 $\forall \ \varepsilon > 0$, note that $\frac{1}{\varepsilon} > 0$, by Archimedean Property,
 $\exists \ n \in \mathbb{N}$, s.t. $0 < \frac{1}{\varepsilon} < n$, i.e. $0 < \frac{1}{n} < \varepsilon$.
By def of Inf, $0 \le w \le \frac{1}{n} < \varepsilon$, this is true $\forall \ \varepsilon > 0$.
By Prop 1.2(xii), $\operatorname{Inf} \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = w = 0$.

1.5.3 Example

Let
$$S = \left\{ \frac{n}{2^n} : n \in \mathbb{N} \right\}$$
. Find Sup *S*, Inf *S* (If exist).

Answer

Note that
$$\frac{n+1}{2^{n+1}} \le \frac{n+n}{2^{n+1}} = \frac{n}{2^n}$$
 true $\forall n \in \mathbb{N}$, so $\frac{n+1}{2^{n+1}} \le \frac{n}{2^n} \le \dots \le \frac{1}{2} \in S \ \forall n \in \mathbb{N}$.
Hence Max $S = \frac{1}{2}$, and so Sup $S = \frac{1}{2}$.

Note that $\frac{n}{2^n} > 0 \forall n \in \mathbb{N}$. Then *S* is bounded below with lower bound 0.

By Completeness Axiom of \mathbb{R} , $w = \inf S$ exists in \mathbb{R} , and $w \ge 0$.

Fixed any $\varepsilon > 0$, by Archimedean Property, $\exists n' \in \mathbb{N}$, s.t. $\frac{1}{n'} < \frac{\varepsilon}{2}$, i.e. $\frac{2}{n'} < \varepsilon$. Then

$$0 \le w \le \frac{n'}{2^{n'}} = \frac{n'}{(1+1)^{n'}} \stackrel{Bernoulli's}{\le} \frac{n'}{1+n'+\frac{1}{2}n'(n'-1)} = \frac{2}{\frac{2}{n'}+2+(n'-1)} = \frac{2}{n'+1+\frac{2}{n'}} \le \frac{2}{n'} \le \varepsilon.$$

By Prop 1.2(xii), Inf S = w = 0.

1.6 Interval

1.6.1 Characterization of Interval

Let $\emptyset \neq S \subset \mathbb{R}$.

S is an interval if and only if $\forall x, y \in S$ with x < y, we have $[x, y] \subset S$.

1.6.2 Property (Union of Interval)

Let $\{I_n\}_{n=1}^{\infty}$ be sequence of interval.

If
$$\bigcap_{n=1}^{\infty} I_n := \{x \in \mathbb{R} : x \in I_n \ \forall \ n \in \mathbb{N}\}$$
 is non-empty,
then $\bigcup_{n=1}^{\infty} I_n := \{x \in \mathbb{R} : x \in I_n \text{ for some } n \in \mathbb{N}\}$ is an interval.

Proof

Let
$$z \in \bigcap_{n=1}^{\infty} I_n$$
. Pick any $x, y \in \bigcup_{n=1}^{\infty} I_n$ with $x < y$, we want to show $[x, y] \subset \bigcup_{n=1}^{\infty} I_n$.

By def of union, $\exists n_x, n_y$, s.t. $x \in I_{n_x}$ and $y \in I_{n_y}$.

By def of intersection,
$$z \in I_{n_x}$$
 and $z \in I_{n_y}$.

(Case 1) Suppose $x \le z < y$.

By characterization of interval, $[x, z] \subset I_{n_x}$ and $[z, y] \subset I_{n_y}$.

Hence,
$$[x, y] = [x, z] \cup [z, y] \subset \bigcup_{n=1}^{\infty} I_n$$

(Case 2) Suppose z < x < y.

By characterization of interval, $[z, y] \subset I_{n_y}$.

Hence,
$$[x, y] \subset [z, y] \subset I_{n_y} \subset \bigcup_{n=1}^{\infty} I_n$$

(Case 3) Suppose $x < y \le z$. it is similarly with Case 2.

In any case, $[x, y] \subset \bigcup_{n=1}^{\infty} I_n$. By characterization of interval, $\bigcup_{n=1}^{\infty} I_n$ is an interval.

1.6.3 Nested Interval Theorem

Let $I_n := [a_n, b_n]$ be nested sequence (i.e. $I_{n+1} \subset I_n \forall n \in \mathbb{N}$) of CLOSED, BOUNDED intervals. Then $\exists \xi \in \mathbb{R}$, s.t. $\xi \in I_n \forall n \in \mathbb{N}$. That is, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Furthermore, if the length of the intervals $b_n - a_n$ satisfy $\inf \{b_n - a_n : n \in \mathbb{N}\} = 0$,

Then
$$\bigcap_{n=1}^{\infty} I_n$$
 is a singleton. That is, $\exists ! \xi \in \mathbb{R}$, s.t. $\bigcap_{n=1}^{\infty} I_n = \{\xi\}$.

1.6.4 Counter Example If Dropping Closed or Bounded Assumption

(Example 1) Let $I_n = \left(0, \frac{1}{n}\right) \forall n \in \mathbb{N}$. Note that $I_{n+1} \subset I_n \forall n \in \mathbb{N}$.

Hence, I_n is nested sequence of (bounded but not closed) intervals.

Suppose it were true that
$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset$$
. Let $\xi \in \bigcap_{n=1}^{\infty} I_n$

By def of $I_n, \xi > 0$. But by Archimedean Property, $\exists N \in \mathbb{N}$, s.t. $0 < \frac{1}{N} < \xi$.

It is a contradiction since $\xi \notin I_N$. Therefore, $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

(Example 2) Let $I_n = [n, +\infty) \forall n \in \mathbb{N}$. Note that $I_{n+1} \subset I_n \forall n \in \mathbb{N}$.

Hence, I_n is nested sequence of (closed but not bounded) intervals.

Suppose it were true that
$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset$$
. Let $\xi \in \bigcap_{n=1}^{\infty} I_n$.

Note that $\xi \in \mathbb{R}$. But by Archimedean Property, $\exists N \in \mathbb{N}$, s.t. $\xi \leq N$.

It is a contradiction since $\xi \notin I_N$. Therefore, $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

2 Sequences

2.1 Definition and Basic Property

2.1.1 Definition (Sequence)

A sequence in \mathbb{R} is a function $a : \mathbb{N} \to \mathbb{R}$.

We usually write a(n) as a_n . Also, we write the sequence a as

$$\{a_n\}, (a_n), \{a_n\}_{n=1}^{\infty} \text{ or } (a_n)_{n=1}^{\infty}$$

2.1.2 Definition (Limit of Sequence)

Let $\{x_n\}$ be a sequence in \mathbb{R} . We say x_n converge to $L \in \mathbb{R}$ if

 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{ s.t. } \forall n \in \mathbb{N} \text{ with } n \ge N, \text{ we have } |x_n - L| < \varepsilon.$

In this case, we say L is a limit of x_n and x_n is a convergent sequence.

If x_n has no limit in \mathbb{R} , then we say x_n is a divergent sequence.

Remark

(i) When the question need you to prove L is the limit of sequence,

you CANNOT determine the value of ε , you only know ε is arbitrary (small) positive number, and then find a (large) N (depends on ε) satisfy the result.

(ii) When the question give you the result that $L = \lim_{n \to \infty} x_n$,

you can take any positive number of ε ,

could be 1, $\frac{|x|}{2}$ (for some $x \neq 0$), or just write $\varepsilon > 0$, depends on what is the conclusion. then the assumption will give you a (large) N (you don't know what this N is),

- such that $|x_n L| \le \varepsilon \ \forall \ n \ge N$, and then using this fact to prove the result.
- (iii) x_n is divergent if $\forall L \in \mathbb{R}, \exists \varepsilon_0 > 0$, s.t. $\forall N \in \mathbb{N}, \exists n' \ge N$, s.t. $|x_{n'} L| \ge \varepsilon_0$.

2.1.3 Property (Uniqueness of Limit)

Limit of a convergent sequence in \mathbb{R} is unique.

Therefore, if $L \in \mathbb{R}$ is the limit of $\{x_n\}$, we will write in this notation:

$$\lim_{n} x_n = L \quad \text{OR} \quad x_n \to L \text{ as } n \to \infty.$$

Proof

Let $L, L' \in \mathbb{R}$ be limits of a convergent sequence x_n . Pick any $\varepsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \ge N$, we have $|x_n - L| < \frac{\varepsilon}{2}$, $\exists N' \in \mathbb{N}$, s.t. $\forall n \ge N'$, we have $|x_n - L'| < \frac{\varepsilon}{2}$. Take $M = \text{Max} \{N, N'\}$, Then $|L - L'| \le |L - x_M| + |x_M - L'| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. This true for any $\varepsilon > 0$, so |L - L'| = 0. Hence, L = L'.

2.1.4 Example

Determine the following sequences are convergent / divergent.

If convergent, guess the limit and prove it by $\varepsilon - N$ definition. If divergent, give a reason.

(a)
$$a_n = \frac{1}{n}$$
,
(b) $a_n = (-1)^n$,
(c) $a_n = \frac{5n+2}{n+1}$,
(d) $a_n = r^n$ given that $0 < r < 1$.

Answer

(a) Guess a_n converge to 0.

Fixed any $\varepsilon > 0$, by A.P., $\exists N \in \mathbb{N}$, s.t. $0 < \frac{1}{N} < \varepsilon$. Note that $\forall n \ge N$, we have $0 < \frac{1}{n} \le \frac{1}{N} < \varepsilon$, that means $\forall n \ge N$, we have $|a_n - 0| = \frac{1}{n} < \varepsilon$. Hence, $\{a_n\}$ convergent with $\lim_{n \to \infty} a_n = 0$.

(**b**) Guess a_n divergent.

Fixed any $L \in \mathbb{R}$, take $\varepsilon_0 = \frac{1}{2} \operatorname{Max} \left\{ \left| L - 1 \right|, \left| L + 1 \right| \right\} > 0$, fixed any $N \in \mathbb{N}$,

(Case 1) Suppose $\varepsilon_0 = \frac{1}{2} |L - 1| > 0$. Take $n' = 2N \ge N$, then $|a_{n'} - L| = |1 - L| = |L - 1| \ge \varepsilon_0$. (Case 2) Suppose $\varepsilon_0 = \frac{1}{2} |L + 1| > 0$.

Take
$$n' = 2N + 1 \ge N$$
, then $|a_{n'} - L| = |-1 - L| = |L + 1| \ge \varepsilon_0$.

In any case, we can find $n' \ge N$ s.t. $|a_{n'} - L| \ge \varepsilon_0$, hence, $\{a_n\}$ divergent.

(c) Guess a_n converge to 5.

Fixed any $\varepsilon > 0$, by A.P., $\exists N \in \mathbb{N}$, s.t. $0 < \frac{1}{N} < \frac{\varepsilon}{3}$. Note that $\forall n \ge N$, we have $0 < \frac{3}{n} \le \frac{3}{N} < \varepsilon$, that means $\forall n \ge N$, we have $|a_n - 5| = \left|\frac{-3}{n+1}\right| < \frac{3}{n} < \varepsilon$. Hence, $\{a_n\}$ convergent with $\lim_n a_n = 5$.

(d) Guess a_n converge to 0. [We want to use Bernoulli's Inequality.]

Let $q = \frac{1}{r} - 1 > 0$, then $r = \frac{1}{q+1}$. Fixed any $\varepsilon > 0$, by A.P., $\exists N \in \mathbb{N}$, s.t. $0 < \frac{1}{N} < q\varepsilon$. Note that $\forall n \ge N$, we have $0 < \frac{1}{nq} \le \frac{1}{Nq} < \varepsilon$,

that means $\forall n \ge N$, we have $|a_n - 0| = r^n = \frac{1}{(q+1)^n} \frac{Bernoulli's}{\sum_{Inequality}} \frac{1}{1+nq} \le \frac{1}{nq} < \varepsilon$. Hence, $\{a_n\}$ convergent with $\lim_{n \to \infty} a_n = 0$.

2.1.5 Definition (Bounded)

A sequence x_n is said to be bounded if $\exists M > 0$, s.t. $|x_n| < M \forall n \in \mathbb{N}$.

2.1.6 Property

Convergent sequence must be bounded.

Proof

Let $\{x_n\}$ be convergent sequence with limit $x \in \mathbb{R}$. Take $\varepsilon = 1$, $\exists N \in \mathbb{N}$, s.t. $|x_n - x| < \varepsilon = 1 \forall n \ge N$. i.e. $x - 1 < x_n < x + 1 \forall n \ge N$. i.e. $|x_n| < \text{Max} \{|x - 1|, |x + 1|\} \forall n \ge N$. (*Remark*: it is necessary since x + 1 can be negative.) Hence, $|x_n| < \text{Max} \{|x_1|, |x_2|, ..., |x_{N-1}|, |x - 1|, |x + 1|\} \forall n \in \mathbb{N}$ (*Remark*: This Max exist in \mathbb{R} since the set is finite.) Hence, $\{x_n\}$ is bounded.

Remark

The converse is not true, the counter example is 2.1.4(b),

the sequence is bounded but not convergent.

2.1.7 Property

Fixed some $m \in \mathbb{N}$.

 $\{x_n\}_{n=1}^{\infty}$ is a convergent sequence if and only if $\{x_{n+m}\}_{n=1}^{\infty}$ is also a convergent sequence.

In this case, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+m}$.

Idea

The limit/convergence of a sequence describe the mass behaviour of the terms for all n large, it will NOT be affected by finitely many terms.

Proof

 (\Longrightarrow) Suppose x_n converge to $x \in \mathbb{R}$.

Then fixed any $\varepsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \ge N$, we have $|x_n - x| < \varepsilon$.

In particular, we have $|x_{n+m} - x| < \varepsilon \ \forall \ n+m \ge N$.

That is we have $|x_{n+m} - x| < \varepsilon \ \forall \ n \ge N$. (since $m \ge 1$.)

Hence, we have x_{n+m} converge to x.

(\Leftarrow) Suppose x_{n+m} converge to $x \in \mathbb{R}$.

Then fixed any $\varepsilon > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \ge N$, we have $|x_{n+m} - x| < \varepsilon$.

Let
$$N' = N + m \in \mathbb{N}$$
, then we have $|x_n - x| < \varepsilon \ \forall \ n \ge N'$.

Hence, we have x_n converge to x.

2.1.8 Property

Let $\{x_n\}$ be a convergent sequence with $\lim_n x_n = x$.

If $\alpha < x < \beta$ for some $\alpha, \beta \in \mathbb{R}$, show that $\exists N \in \mathbb{N}$ s.t. $\alpha < x_n < \beta \forall n \ge N$.

Proof

Take $\varepsilon_0 = Min\{\beta - x, x - \alpha\} > 0$, by x_n converge to x, $\exists N \in \mathbb{N}$, s.t. $|x_n - x| < \varepsilon_0 \forall n \ge N$, that is $x - \varepsilon_0 < x_n < x + \varepsilon_0 \forall n \ge N$. Note that $\varepsilon \le \beta - x$ and $\varepsilon \le x - \alpha$ by definition of Min. Hence, $\alpha = x - (x - \alpha) \le x - \varepsilon_0 < x_n < x + \varepsilon_0 \le x + (\beta - x) = \beta \forall n \ge N$.

2.2 Monotone Convergent Theorem

2.2.1 Definition

- A sequence $\{x_n\}$ is said to be increasing if $x_n \le x_{n+1} \forall n \in \mathbb{N}$.
- A sequence $\{x_n\}$ is said to be decreasing if $x_n \ge x_{n+1} \forall n \in \mathbb{N}$.
- A sequence is said to be monotone if it is increasing or decreasing.

2.2.2 Main Statement of Theorem

• An increasing sequence $\{x_n\}$ is convergent if and only if it is bounded above. In this case,

$$\lim_{n \to \infty} x_n = \sup \{x_n : n \in \mathbb{N}\}$$

• An decreasing sequence $\{x_n\}$ is convergent if and only if it is bounded below. In this case,

$$\lim_{n} x_n = \inf \{ x_n : n \in \mathbb{N} \}$$

Remark

The theorem is still true if the tail of the sequence is monotone.

2.2.3 Example

Let $x_1 = 8$, $x_{n+1} = \frac{1}{2}x_n + 2 \forall n \in \mathbb{N}$. Show $\{x_n\}$ convergent and find the limit.

Answer

Use induction on n to show the sequence is decreasing and bounded below by 0.

Note $0 < x_2 = 6 \le 8 = x_1$. Now assume $0 < x_k \le x_{k-1}$ for some $k \in \mathbb{N}$.

Then
$$x_{k+1} = \frac{1}{2}x_k + 2 \le \frac{1}{2}x_{k-1} + 2 = x_k$$
 and $x_{k+1} = \frac{1}{2}x_k + 2 > 0 + 2 > 0$.

Then $\{x_n\}$ is a bounded below decreasing sequence and

hence convergent by Monotone Convergent Theorem.

Let $x = \lim_{n \to \infty} x_n$, then we have

$$\lim_{n} x_{n+1} = \frac{1}{2} \lim_{n} x_n + 2$$
$$x = \frac{1}{2}x + 2$$
$$x = 4.$$

2.3 Bolzano-Weierstrass Theorem

2.3.1 Definition

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} , and $\{n_k\}_{k=1}^{\infty}$ be a STRICTLY increasing sequence in \mathbb{N} . (i.e $n_1 < n_2 < \dots$ and $n_k \in \mathbb{N} \forall k \in \mathbb{N}$) The sequence $\{x_{n_k}\}_{k=1}^{\infty}$ is called a subsequence of $\{x_n\}$.

2.3.2 Example

Let $x_n = \frac{1}{2n+3}$, $n_k = k^2$, the subsequence can be expression by this table:

k	1	2	3	k
n_k	1	4	9	k^2
x _{nk}	$\frac{1}{2+3} = \frac{1}{5}$	$\frac{1}{8+3} = \frac{1}{11}$	$\frac{1}{18+3} = \frac{1}{21}$	$\frac{1}{2k^2+3}$

2.3.3 Property

Let $\left\{x_{n_k}\right\}$ be subsquence of $\left\{x_n\right\}$ in \mathbb{R} . Then

- (i) $n_k \ge k \forall k \in \mathbb{N}$.
- (ii) if $\{x_n\}$ converge, then $\{x_{n_k}\}$ converge to same limit.

Proof

(i) Use Induction on k, it is true when k = 1 since Min $\mathbb{N} = 1$.

Assume $n_l \ge l$ for some $l \in \mathbb{N}$, then $n_{l+1} > n_l \ge l$, so $n_{l+1} \ge l + 1$. (Why?)

Hence, $n_k \ge k \forall k \in \mathbb{N}$.

(ii) Suppose $\lim_{n \to \infty} x_n = x \in \mathbb{R}$. Fixed any $\varepsilon > 0$, we have some $N \in \mathbb{N}$, s.t. $|x_n - x| < \varepsilon \forall n \ge N$.

In particular, by (i), if $k \ge N$, $n_k \ge N$, so $|x_{n_k} - x| < \varepsilon \ \forall \ k \ge N$. That is, $\lim_k x_{n_k} = x$.

2.3.4 Corollary

If the sequence $\{x_n\}$

- (i) has a divergent subsequence, OR
- (ii) has two convergent subsequence $\{x_{n_i}\}$, and $\{x_{n_j}\}$ with $\lim_{i \to \infty} x_{n_i} \neq \lim_{i \to \infty} x_{n_i}$,

then $\{x_n\}$ is divergent.

2.3.5 Claim

Every sequence in \mathbb{R} has a monotone subsequence.

Proof

Let $\{x_n\}$ be a sequence in \mathbb{R} . We define x_m is a "peak" if $x_m \ge x_n \forall m \le n$.

(Case 1) Suppose $\{x_n\}$ has infinitely many "peaks".

Then list the "peaks" $x_{m_1}, x_{m_2}, ..., x_{m_k}, ...$ with $m_1 < m_2 < ... < m_k < ...$. By definition of "peak", we have $x_{m_1} \ge x_{m_2} \ge ... \ge x_{m_k} \ge ...$,

hence $\left\{x_{m_k}\right\}$ is a decreasing subsequence.

(Case 2) Suppose $\{x_n\}$ has finitely many "peaks". Then list ALL "peaks" $x_{m_1}, x_{m_2}, ..., x_{m_N}$ with $m_1 < m_2 < ... < m_N$. That means x_n is NOT a "peak" if n > N. Take $n_1 = N + 1 > N$, since x_{n_1} is not a "peak", then $\exists n_2 > n_1$, s.t. $x_{n_2} > x_{n_1}$. Since $n_2 > n_1 > N$, then x_{n_2} is not a "peak", then $\exists n_3 > n_2 > n_1$, s.t. $x_{n_3} > x_{n_2} > x_{n_1}$. Repeat the process, we have $N < n_1 < n_2 < ... < n_k < ...$ such that $x_{n_1} < x_{n_2} < ... < x_{n_k} < ...$ that means $\{x_{n_k}\}$ is a (strictly) increasing subsequence.

2.3.6 Bolzano-Weierstrass Theorem

Every bounded sequence has convergent subsequence.

Proof (from Monotone Convergent Theorem)

Let $\{x_n\}$ be bounded sequence. By the claim, there are a monotone subsequence $\{x_{n_k}\}$.

Since
$$\{x_n\}$$
 bounded, so $\{x_{n_k}\}$ bounded. (Why?)

By Monotone Convergent Theorem, $\{x_{n_k}\}$ converge.

2.4 Cauchy Convergent Theorem

2.4.1 Definition

A sequence in ${\mathbb R}$ is said to be Cauchy if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{ s.t. } \forall n, m \ge N, \text{ we have } |x_n - x_m| < \varepsilon.$$

2.4.2 Main Statement of Theorem

A sequence in \mathbb{R} is convergent if and only if it is Cauchy.

2.5 **Properly Divergent and Series**

2.5.1 Definition

(i) A sequence $\{x_n\}$ in \mathbb{R} is said to be tends to $+\infty$, denoted as $\lim_n x_n = +\infty$,

if $\forall M > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \ge N$, we have $x_n > M$.

(ii) A sequence $\{x_n\}$ in \mathbb{R} is said to be tends to $-\infty$, denoted as $\lim_n x_n = -\infty$,

if $\forall M > 0$, $\exists N \in \mathbb{N}$, s.t. $\forall n \ge N$, we have $x_n < -M$.

(iii) In this two cases, the sequence is called properly divergent.

2.5.2 Example involving summation

Let $\{x_n\}$ be a sequence in \mathbb{R} . Define $\{S_n\}$ by

$$S_n = \frac{1}{n} \left(x_1 + x_2 + \dots + x_n \right) = \frac{1}{n} \sum_{i=1}^n x_i,$$

that is the mean of first *n* terms.

- (a) If $\lim_{n \to \infty} x_n = x \in \mathbb{R}$, show that $\lim_{n \to \infty} S_n = x$.
- (**b**) If $\lim_{n} x_n = +\infty$, what can you say about $\lim_{n} S_n$? Provide the reason.

(c) Is that true that $\{x_n\}$ is convergent given that $\{S_n\}$ is convergent?

Answer

(a) Fixed any $\varepsilon > 0$,

by $\lim_{n} x_n = x$, $\exists N_1 \in \mathbb{N}$, s.t. $|x_n - x| < \frac{\varepsilon}{2} \forall n \ge N_1$. Now $K := \sum_{i=1}^{N_1} |x_i - x| + 1$ is a fixed constant, by A.P., $\exists N_2 \in \mathbb{N}$, s.t. $\frac{1}{N_2} < \frac{\varepsilon}{2K}$.

Take $N = Max \{N_1, N_2\}$. If $n \ge N$, we have

$$\begin{split} |S_n - x| &= \frac{1}{n} \left| \sum_{i=1}^n x_i - nx \right| = \frac{1}{n} \left| \sum_{i=1}^n (x_i - x) \right| \\ &\leq \frac{1}{n} \sum_{i=1}^n |x_i - x| \\ &= \frac{1}{n} \sum_{i=1}^{N_1} |x_i - x| + \frac{1}{n} \sum_{i=N_1+1}^n |x_i - x| \\ &< \frac{1}{N_2} K + \frac{1}{n} \sum_{i=N_1+1}^n \frac{\varepsilon}{2} \\ &< \frac{\varepsilon}{2} + \frac{n - N_1}{n} \frac{\varepsilon}{2} \\ &\leq \varepsilon. \end{split}$$

Hence, we have $\lim_{n} S_n = x$.

(b) Guess $\lim_{n} S_n = +\infty$. Fixed any M > 0,

by $\lim_{n} x_n = +\infty$, $\exists N_1 \in \mathbb{N}$, s.t. $x_n > 3M \ \forall n \ge N_1$. Now $K := \sum_{i=1}^{N_1} |x_i|$ is a fixed constant, by A.P., $\exists N_2 \in \mathbb{N}$, s.t. $\frac{K}{M} < N_2$.

Note
$$x_i \ge -|x_i| \quad \forall i = 1, 2, ..., N_1 - 1$$
, so $\frac{1}{n} \sum_{i=1}^{N_1} x_i \ge -\frac{1}{n} \sum_{i=1}^{N_1} |x_i| \ge -\frac{K}{N_2} \ge -M \quad \forall n \ge N_2$.

Take $N = Max \{3N_1, N_2\}$. If $n \ge N$, we have

$$\frac{1}{n}\sum_{i=1}^{n}x_{i} = \frac{1}{n}\sum_{i=1}^{N_{1}}x_{i} + \frac{1}{n}\sum_{i=N_{1}+1}^{n}x_{i}$$

$$> -M + \frac{n - N_{1}}{n}(3M)$$

$$= -M + \left(1 - \frac{N_{1}}{n}\right)(3M)$$

$$\ge -M\left(1 - \frac{N_{1}}{3N_{1}}\right)(3M)$$

$$= -M + \frac{2}{3} \cdot 3M$$

$$= M$$

Hence, we have $\lim_{n} S_n = +\infty$.

(c) NO. Consider the counter example $x_n = (-1)^n$, Note $\{x_n\}$ is NOT a convergent sequence but $S_n = \begin{cases} \frac{-1}{n} & \text{, if } n \text{ is odd} \\ 0 & \text{, if } n \text{ is even} \end{cases}$ converge to 0.

Limit Superior and Limit Inferior

2.5.3 Definition

Let $\{x_n\}$ be a BOUNDED sequence in \mathbb{R} . We define

•
$$\limsup_{n} x_n = \limsup_{n} \sup_{k > n} x_k,$$

• $\liminf_{n} x_n = \liminf_{n} \inf_{k \ge n} x_k.$

2.5.4 Equivalent Definition

Let $\{x_n\}$ be a bounded sequence in \mathbb{R} . Then $\limsup x_n = x$ is equivalent to

- (i) $x = \limsup_{n} x_n = \limsup_{n} x_k = \inf_{k \ge n} \sup_{k \ge n} x_k$, OR
- (ii) $\forall \epsilon > 0, x + \epsilon < x_n$ for ONLY finitely many $n \in \mathbb{N}$ but $x - \epsilon < x_n$ for INFINTELY many $n \in \mathbb{N}$.

2.5.5 Property

Let $\{x_n\}$ be a bounded sequence in \mathbb{R} . Then

 $\{x_n\}$ is convergent if and only if $\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n$.

In this case, we have $\limsup_{n} x_n = \lim_{n} x_n = \liminf_{n} x_n$.

Proof

 $(\Longrightarrow) \text{ Suppose } \lim_{n} x_{n} = x \in \mathbb{R}. \text{ Fixed any } \varepsilon > 0, \exists N \in \mathbb{N}, \text{ s.t. } |x_{n} - x| < \frac{\varepsilon}{2} \forall n \ge N.$ That is, $x - \frac{\varepsilon}{2} < x_{n} < x + \frac{\varepsilon}{2} \forall n \ge N.$ Therefore, for any $n \ge N$, we have $x - \frac{\varepsilon}{2} < \sup_{k \ge n} x_{k} \le x + \frac{\varepsilon}{2}$ and $x - \frac{\varepsilon}{2} \le \inf_{k \ge n} x_{k} < x + \frac{\varepsilon}{2}.$

Hence, we have $\left|\sup_{k\geq n} x_k - x\right| \leq \frac{\varepsilon}{2} < \varepsilon$ and $\left|\inf_{k\geq n} x_k - x\right| \leq \frac{\varepsilon}{2} < \varepsilon \ \forall \ n \geq N$.

Hence, $\limsup_{n} x_n = x = \liminf_{n} x_n$.

(\Leftarrow) Suppose $\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = x \in \mathbb{R}$. Fixed any $\varepsilon > 0$,

$$\begin{array}{l} \exists \ N_1 \in \mathbb{N}, \, \mathrm{s.t.} \, \left| \sup_{k \ge n} x_k - x \right| < \varepsilon \, \forall n \ge N_1, \, \mathrm{in \ particular}, \, \sup_{k \ge n} x_k < x + \varepsilon \, \forall \, n \ge N_1. \\ \\ \exists \ N_2 \in \mathbb{N}, \, \mathrm{s.t.} \, \left| \inf_{k \ge n} x_k - x \right| < \varepsilon \, \forall n \ge N_2, \, \mathrm{in \ particular}, \, \inf_{k \ge n} x_k > x - \varepsilon \, \forall \, n \ge N_2. \\ \\ \\ \mathrm{Hence, \ for \ any \ } n \ge N \, := \mathrm{Max} \, \{N_1, N_2\}, \, \mathrm{we \ have} \end{array}$$

$$x - \varepsilon < \inf_{k \ge N} x_k \le x_n \le \sup_{k \ge N} x_k < x + \varepsilon.$$

That is, we have $|x_n - x| \le \varepsilon \ \forall \ n \ge N$.

Therefore, $\{x_n\}$ is convergent with $\lim_n x_n = x$.

2.5.6 Property

Let $\{x_n\}$, $\{y_n\}$ be bounded sequences in \mathbb{R} . Then

$$\limsup_{n} (x_n + y_n) \le \limsup_{n} x_n + \limsup_{n} y_n.$$

Proof

Note for any
$$n \in \mathbb{N}$$
, $x_m + y_m \le \sup_{k \ge n} x_k + \sup_{k \ge n} y_k \ \forall \ m \ge n$,

Hence $\sup_{k \ge n} (x_k + y_k) \le \sup_{k \ge n} x_k + \sup_{k \ge n} y_k \ \forall n \in \mathbb{N}$. Therefore,

$$\limsup_{n} (x_k + y_k) \le \lim_{n} \left(\sup_{k \ge n} x_k + \sup_{k \ge n} y_k \right) = \limsup_{n} x_n + \limsup_{n} y_n.$$

Remark

The inequality may be occur. Think about $x_n = (-1)^n$ and $y_n = (-1)^{n+1}$.

3 Limit of Function

3.1 Basic Property

3.1.1 Definition (Neighborhood)

Let $c \in \mathbb{R}$, $\delta > 0$, we denote the δ -neighborhood of c as

$$V_{\delta} := (c - \delta, c + \delta) = \left\{ x \in \mathbb{R} : |x - c| < \delta \right\}.$$

3.1.2 Definition (Cluster Point)

Let $A \subset \mathbb{R}$. A point $c \in \mathbb{R}$ is said to be a cluster point w.r.t. A if

$$\forall \varepsilon > 0, \exists x \in A \text{ with } x \neq c, \text{ s.t. } |x - c| < \varepsilon \text{ (Or } x \in V_{\varepsilon}(c) \setminus \{c\}).$$

Remark

A cluster point $c \in \mathbb{R}$ w.r.t. A may NOT be in A. (Consider $A = \mathbb{R} \setminus \{0\}, c = 0$)

A point $a \in A$ may NOT be a cluster point w.r.t A. (Consider $A = \{0\}, a = 0$)

3.1.3 Definition (Limit of Function)

Let $\emptyset \neq A \subset \mathbb{R}$, $f : A \to \mathbb{R}$ be a function, $c \in \mathbb{R}$ be a cluster point w.r.t. A.

 $L \in \mathbb{R}$ is said to be a limit of f at c if

$$\forall \varepsilon > 0, \exists \delta > 0, \text{ s.t. } \forall x \in (c - \delta, c + \delta) \text{ with } x \neq c, \text{ we have } \left| f(x) - L \right| < \varepsilon.$$

By some property, we know the limit of f at c is unique if it exists,

hence we will denote the above case as

$$\lim_{x \to c} f(x) = L \quad \text{or} \quad f(x) \to L \text{ as } x \to c$$

3.1.4 Definition

Sometime, we will discuss different types of limit of function.

For example, we will discuss f tends to infinity or as x tends to infinity or the one-sided limit.

It will be difficult to remember all the cases. But the patterns of them are similar.

 $\lim_{x \to \infty} f(x) = L$ if \forall Statement A, \exists Statement B, s.t. $\forall x \in \mathbb{R}$ with Statement C, we have Statement D.

Cases	Notation	Statement A	Statement B	Statement C	Statement D
Two-sided limit	$\lim_{x \to c} f(x) = ??$	-	$\delta > 0$	$0 < x - c < \delta$	-
RHS one-sided limit	$\lim_{x \to c^+} f(x) = ??$	-	$\delta > 0$	$0 < x - c < \delta$	-
LHS one-sided limit	$\lim_{x \to c^-} f(x) = ??$	-	$\delta > 0$	$0 < c - x < \delta$	-
limit as $x \to +\infty$	$\lim_{x \to +\infty} f(x) = ??$	-	N > 0	$x \ge N$	-
limit as $x \to -\infty$	$\lim_{x \to -\infty} f(x) = ??$	-	N > 0	$x \leq -N$	-
limit tends to $L \in \mathbb{R}$	$\lim_{x \to ??} f(x) = L$	$\varepsilon > 0$	-	-	$\left f(x) - L\right < \varepsilon$
limit tends to $+\infty$	$\lim_{x \to ??} f(x) = +\infty$	M > 0	-	-	f(x) > M
limit tends to $-\infty$	$\lim_{x \to ??} f(x) = -\infty$	M > 0	-	-	f(x) < -M

Example

 $\lim_{x \to 2^-} f(x) = +\infty \text{ means } \forall M > 0, \exists \delta > 0, \text{ s.t. } \forall x \in \mathbb{R} \text{ with } 0 < x - 2 < \delta, \text{ we have } f(x) > M.$

3.1.5 Example

Guess the limit and proof by definition.

(i)
$$\lim_{x \to -1} \frac{x^2}{x+2}$$
 (Ans: 1)
(ii) $\lim_{x \to 2} \frac{x^3+3}{x-1}$ (Ans: 11)
(iii) $\lim_{x \to 1^-} \frac{x}{x-1}$ (Ans: $-\infty$)
(iv) $\lim_{x \to -\infty} \frac{x^2}{2x^2-1}$ (Ans: $\frac{1}{2}$)

Answer

(i) Fixed any $\varepsilon > 0$, take $\delta = \operatorname{Min}\left\{\frac{1}{2}, \frac{\varepsilon}{8}\right\} > 0$, if $x \in \mathbb{R}$ with $0 < |x+1| < \delta$, we have $-1 - \delta < x < -1 + \delta$ $-\frac{3}{2} < x < -\frac{1}{2} < 0.$

That is,
$$0 < \frac{1}{2} < x + 2 < 2$$
 and hence $\frac{1}{2} < \frac{1}{x+2} < 2$, and also, $|x| < \frac{3}{2} < 2$.

If
$$x \in \mathbb{R}$$
 with $0 < |x+1| < \delta$, we have

$$\left|\frac{x^2}{x+2} - 1\right| = \left|\frac{x^2 - x - 2}{x+2}\right| = |x - 1| \left|\frac{x-2}{x+2}\right| \le 2\delta \left(|x| + 2\right) \le 8\delta < \varepsilon.$$

Hence, $\lim_{x \to -1} \frac{x^2}{x+2} = 1.$

(ii) Fixed any
$$\varepsilon > 0$$
, take $\delta = \operatorname{Min}\left\{\frac{1}{2}, \frac{\varepsilon}{40}\right\} > 0$, if $x \in \mathbb{R}$ with $0 < |x - 2| < \delta$, we have

$$2 - \delta < x < 2 + \delta$$

$$0 < \frac{3}{2} < x < \frac{5}{2}.$$

That is, $0 < \frac{1}{2} < x - 1 < \frac{3}{2}$ and hence $\frac{2}{3} < \frac{1}{x - 1} < 2$, and also, $|x|^2 + 2|x| + 7 < \frac{25}{4} + 5 + 7 < 20$. If $x \in \mathbb{R}$ with $0 < |x - 2| < \delta$, we have

$$\left|\frac{x^3+3}{x-1}-11\right| = \left|\frac{x^3-11x+14}{x-1}\right| = |x=2| \left|\frac{x^2+2x-7}{x-1}\right| \le 2\delta \left(|x|^2+2|x|+7\right) \le 40\delta < \varepsilon.$$

Hence, $\lim_{x \to -1} \frac{x^3+3}{x-1} = 11.$

(iii) Fixed any M > 0, take $\delta = \frac{1}{M+1} > 0$, if $x \in \mathbb{R}$ with $0 < 1 - x < \delta$, we have

$$-x < -1 - \frac{1}{M+1} = -\frac{M}{M+1}$$

$$x > \frac{M}{M+1}$$

$$Mx + x > M$$

$$x > -M(x-1)$$

$$\frac{x}{x-1} < -M$$
Since $x - 1 < 0$

(iv) Fixed any $\varepsilon > 0$, by A.P., $\exists M \in \mathbb{N}$, s.t. $\frac{1}{M} < \varepsilon$, W.L.O.G, assume $M \ge 2$.

If x < -M, then $x^2 > M^2 > M$, and so

$$\left|\frac{x^2}{2x^2 - 1} - \frac{1}{2}\right| = \left|\frac{1}{2(2x^2 - 1)}\right| \le \frac{1}{4M^2 - 2} \le \frac{1}{M} \le \varepsilon.$$

Hence, $\lim_{x \to -\infty} \frac{x^2}{2x^2 - 1} = \frac{1}{2}$.

3.2 Sequential Criterion

3.2.1 Sequential Criterion for Limit of Function

Let $f : A \to \mathbb{R}, c \in \mathbb{R}$ is a cluster point of A. Let $L \in \mathbb{R}$. Then

 $\lim_{x \to \infty} f(x) = L \text{ if and only if}$

 $\lim_{n} f(a_n) = L \text{ for any sequence } \{a_n\} \text{ with } a_n \in A \setminus \{c\} \forall n \in \mathbb{N} \text{ and } \lim_{n \to \infty} a_n = c.$

3.2.2 Sequential / Cauchy Criterion for Limit of Function

Let $f : A \to \mathbb{R}, c \in \mathbb{R}$ is a cluster point of A. Let $L \in \mathbb{R}$.

The following statements are equivalent:

- (i) $\lim_{x \to \infty} f(x)$ exists in \mathbb{R} .
- (ii) (Sequential Criterion) $\lim_{n} f(x_{n}) \text{ exists for any sequence } \{x_{n}\} \text{ with } x_{n} \in A \setminus \{c\} \forall n \in \mathbb{N} \text{ and } \lim_{n} x_{n} = c.$ (the limits are NOT necessarily same for each sequence, but in fact they are same.)
- (iii) (Cauchy Criterion) $\forall \epsilon > 0, \exists \delta > 0, \text{ s.t. } \forall x, x' \in A \text{ with } 0 < |x - c| < \delta \text{ and } 0 < |x' - c| < \delta,$ we have $|f(x) - f(x')| < \epsilon$.

Proof

(i) \Longrightarrow (iii) Suppose $\lim_{x \to c} f(x) = L \in \mathbb{R}$. Fixed any $\varepsilon > 0$,

we can find some $\delta > 0$, such that $|f(w) - L| < \frac{\varepsilon}{2} \forall w \in A$ with $0 < |w - c| < \delta$.

If $x, x' \in A$ with $0 < |x - c| < \delta$ and $0 < |x' - c| < \delta$, we have

$$\left|f(x) - f(x')\right| \le \left|f(x) - L\right| + \left|f(x') - L\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(iii) \Longrightarrow (ii) Suppose f satisfy (iii).

Pick arbitrary sequence $\{x_n\}$ with $x_n \in A \setminus \{c\} \forall n \in \mathbb{N}$ and $\lim_n x_n = c$.

Fixed any $\varepsilon > 0$, by assumption, we can find some $\delta > 0$, s.t.

 $\forall x, x' \in A \text{ with } 0 < |x - c| < \delta \text{ and } 0 < |x' - c| < \delta, \text{ we have } |f(x) - f(x')| < \varepsilon. \quad (*)$

For this $\delta > 0$, by convergence and assumption of $\{x_n\}, \exists N \in \mathbb{N}$, s.t. $0 < |x_n - c| < \delta \forall n \ge N$.

By (*), we have $|f(x_n) - f(x_m)| < \varepsilon \ \forall n, m \ge N$.

Hence, $\{f(x_n)\}$ is Cauchy and so Convergent by Cauchy Convergent Theorem for Sequence.

(ii) \Longrightarrow (i) Suppose f satisfy (ii).

<u>Claim</u>: $\lim_{n} f(x_n)$ is SAME whenever $\{x_n\}$ is a sequence with $x_n \in A \setminus \{c\} \forall n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = c$.

Proof Let $\{x_n\}, \{y_n\}$ be two sequences satisfying $x_n, y_n \in A \setminus \{c\} \forall n \in \mathbb{N}$ and $\lim_n x_n = c = \lim_n y_n$. Suppose $\lim_n f(x_n) = L$ and $\lim_n f(y_n) = L'$ for some $L, L' \in \mathbb{R}$. Now, we construct a new sequence $\{z_n\}$ by $z_{2n} = x_n$ and $z_{2n-1} = y_n$ for any $n \in \mathbb{N}$. Then $z_n \in A \setminus \{c\} \forall n \in \mathbb{N}$ and $\lim_n z_n = 0$. (I left this statement as exercise.) Hence, $\lim_n f(z_n) = L''$ for some $L'' \in \mathbb{R}$. Note that $\{f(x_n)\}, \{f(y_n)\}$ are subsequences of $\{f(z_n)\}$ and so we must have L = L'' = L'.

By the claim, $\exists L \in \mathbb{R}$, s.t. for any sequence $\{x_n\}$ with $x_n \in A \setminus \{c\} \forall n \in \mathbb{N}$ and $\lim_n x_n = c$,

we have $\lim_{n} f(x_n) = L$. (**)

Suppose it were true that $\lim_{x \to c} f(x)$ does not exist. In particular, $\lim_{x \to c} f(x) \neq L$.

 $\exists \varepsilon_0 > 0, \text{ s.t. } \forall n \in \mathbb{N}, \exists a_n \in A \text{ with } 0 < |a_n - c| < \frac{1}{n}, \text{ s.t. } |f(a_n) - L| \ge \varepsilon_0.$ Note $\{a_n\}$ is a sequence with $a_n \in A \setminus \{c\}$ and $\lim_n a_n = c$ BUT $\lim_n f(a_n) \neq L$. Contradiction with (**). Hence, $\lim_{x \to c} f(x) = L \in \mathbb{R}$.

4 Continuous Function

4.1 Basic Property

4.1.1 Definition

Let $f : A \to \mathbb{R}$, A non-empty subset of \mathbb{R} , let $c \in A$.

f is said to be continuous at c if

 $\forall \varepsilon > 0, \exists \delta > 0, \text{ s.t. } \forall x \in A \text{ with } |x - c| < \delta, \text{ we have } |f(x) - f(c)| < \varepsilon.$

Also, f is said to be continuous on A if f is continuous at every $c \in A$.

Remark

- (i) c must need to be in A, otherwise, f(c) is NOT well-defined.
- (ii) It is NOT necessary for c to be a cluster point of A.
- (iii) If c is not a cluster point of A (we called it isolated point), then f is automatically continuous at c.
- (iv) If c is a cluster point of A, then f is continuous at c is equivalent to

$$\lim_{\substack{x \to c \\ x \in A}} f(x) = f(c)$$

but in this course, please do NOT use this equivalent definition.

4.1.2 Property

If $f, g : A \to \mathbb{R}$ are continuous at $c \in A$, then fg is also continuous at c.

Proof

Suppose $f, g : A \to \mathbb{R}$ are continuous at $c \in A$.

Claim: g is locally bounded at 0. i.e. $\exists M > 0, \delta_1 > 0$, s.t. $|g(x)| < M \forall x \in A$ with $|x - c| < \delta_1$.

Proof Take $\varepsilon_0 = 1$, since g is continuous at $c, \exists \delta_1 > 0$, s.t. $|g(x) - g(c)| \le \varepsilon_0 = 1 \forall x \in A$ with $|x - c| \le \delta_1$

$$|g(x) - g(c)| < \varepsilon_0 = 1 \forall x \in A \text{ with } |x - c| < \delta_1.$$

That is, $f(x) < \text{Max} \{ |g(c) + 1|, |g(c) - 1| \} =: M \forall x \in A \text{ with } |x - c| < \delta_1.$

Fixed any $\varepsilon > 0$, by f, g continuous at c, we can find

 $\delta_2 > 0$, s.t. $\forall x \in A$ with $|x - c| < \delta_2$, we have $|f(x) - f(c)| < \frac{\varepsilon}{2M}$ and $\delta_3 > 0$, s.t. $\forall x \in A$ with $|x - c| < \delta_3$, we have $|g(x) - g(c)| < \frac{\varepsilon}{2|f(c)| + 1}$.

Take $\delta = Min \{\delta_1, \delta_2, \delta_3\} > 0$, if $x \in A$ with $|x - c| < \delta$, we have

$$\begin{split} \left| f(x)g(x) - f(c)g(c) \right| &\leq \left| f(x) - f(c) \right| \left| g(x) \right| + \left| f(c) \right| \left| g(x) - g(c) \right| \\ &\leq \frac{\varepsilon}{2M} \cdot M + \left| f(c) \right| \cdot \frac{\varepsilon}{2\left| f(c) \right| + 1} \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Hence, fg is also continuous at c.

4.1.3 Property

Let $A, B \subset \mathbb{R}$.

If $f : B \to \mathbb{R}, g : A \to B$ are continuous functions, then $f \circ g$ is also continuous on A.

Proof

Fixed any $\varepsilon > 0$, Fixed any $c \in A$, by continuity of f,

we can find
$$\eta > 0$$
, s.t. $\forall y \in B$ with $|y - g(c)| < \eta$, we have $|f(y) - f(g(c))| < \varepsilon$. (*)

For this $\eta > 0$, by continuity of *g*,

we can find $\delta > 0$, s.t. $\forall x \in A$ with $|x - c| < \delta$, we have $|g(x) - g(c)| < \eta$.

Combine with (*), we know $\forall x \in A$ with $|x - c| < \delta$, we have $\left| f\left(g(x)\right) - f\left(g(c)\right) \right| < \varepsilon$.

Hence, $f \circ g$ is also continuous on A.

Question

Let $\emptyset \neq A \subset \mathbb{R}$, Let $f : \mathbb{R} \to \mathbb{R}$ be the distance function from A. That is,

$$f(x) := \inf \{ |x - a| : a \in A \}.$$

- (a) Show $f(x) \leq |x y| + f(y)$ for any $x, y \in \mathbb{R}$.
- (b) Show f is continuous on \mathbb{R} .
- (c) Let $c \notin A$. Show c is a cluster point of A if and only if f(c) = 0.
- (d) Can we drop the assumption $c \notin A$ in part (c)?

Answer

(a) Pick any $x, y \in \mathbb{R}$, $a \in A$, by triangle inequality, $|x - a| \leq |x - y| + |y - a|$.

By taking infimum over $a \in A$ on both sides, since infimum preserves order, we have

$$f(x) \le |x - y| + f(y).$$

(b) Fixed any $\varepsilon > 0$, $x \in \mathbb{R}$, take $\delta = \varepsilon > 0$. If $y \in \mathbb{R}$ with $|x - y| < \delta$, by (a), we have

 $f(x) - f(y) \le |x - y|$ and $f(y) - f(x) \le |x - y|$, and so $|f(x) - f(y)| \le |x - y| < \delta = \varepsilon$.

Hence, f is continuous at every point $x \in \mathbb{R}$. Hence, f is continuous on \mathbb{R} .

(c)(\implies) Suppose $c \notin A$ is a cluster point of A. Fixed any $\varepsilon > 0$,

We can find some $a \in A$, such that $0 \le |c - a| < \varepsilon$.

By definition of Inf, f(c) = 0.

(\Leftarrow) Suppose $f(c) = 0, c \notin A$. Fixed any $\varepsilon > 0$, by definition of f (i.e. by definition of Inf), we can find some $a \in A$, such that $|c - a| < \varepsilon$. Note that $a \neq c$ since $a \in A$ and $c \notin A$, that is, $\forall \varepsilon > 0, \exists a \in A \setminus \{c\}$, such that $|c - a| < \varepsilon$.

Hence, c is a cluster point of A.

(d) NO. Consider the counter example A = {0},then f(0) = 0 but 0 is NOT a cluster point of A.

4.2 Uniform Continuity

4.2.1 Definition

Let $\emptyset \neq A \subset \mathbb{R}$ and $f : A \to \mathbb{R}$ be a function.

f is said to be Uniformly Continuous on A if

$$\forall \varepsilon > 0, \exists \delta > 0, \text{ s.t. } \forall x, y \in A \text{ with } |x - y| < \delta, \text{ we have } |f(x) - f(y)| \le \varepsilon.$$

Remark

- (i) The uniform continuity of f is defined on some set but not a point.
- (ii) If f is uniformly continuous on A, then f is continuous on A.

4.2.2 Example

- (a) f(x) = x is uniformly continuous on \mathbb{R} .
- **(b)** $f(x) = x^2$ is uniformly continuous on [a, b] for any $a, b \in \mathbb{R}$ with a < b.

However, $f(x) = x^2$ is NOT uniformly continuous on \mathbb{R} but it is continuous on \mathbb{R} .

(c) $f(x) = \frac{1}{x}$ is uniformly continuous on [a, b] for any $a, b \in \mathbb{R}$ with 0 < a < b.

However, $f(x) = \frac{1}{x}$ is NOT uniformly continuous on (0, b]but it is continuous on (0, b] for any b > 0.

4.2.3 Uniform Continuity Theorem

Let $f : [a, b] \to \mathbb{R}$ be a function for some $a, b \in \mathbb{R}$ with a < b.

Then f is uniformly continuous on [a, b] if and only if f is continuous on [a, b].

4.2.4 Question

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function on \mathbb{R} .

- (a) If $\lim_{x \to +\infty} f(x) = L \in \mathbb{R}$ and $\lim_{x \to -\infty} f(x) = L' \in \mathbb{R}$, then f is uniformly continuous on \mathbb{R} .
- (b) If f is periodic with period p > 0, that is

$$f(x+p) = f(x)$$
 for any $x \in \mathbb{R}$,

then f is uniformly continuous on \mathbb{R} .

Answer

(a) Fixed any $\varepsilon > 0$, by $\lim_{x \to +\infty} f(x) = L \in \mathbb{R}$ and $\lim_{x \to -\infty} f(x) = L' \in \mathbb{R}$,

$$\exists M > 0, \text{ s.t. } |f(x) - L| < \frac{\varepsilon}{4} \forall x \ge M \quad (*) \text{ and}$$
$$\exists M' < 0, \text{ s.t. } |f(x) - L'| < \frac{\varepsilon}{4} \forall x \le M' \quad (**).$$

Note that f is continuous on [M', M],

and hence f is uniformly continuous on [M', M] by Uniform Continuity Theorem.

Therefore, $\exists \delta' > 0$, s.t. $\forall x, y \in [M', M]$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \frac{\varepsilon}{2}$ (***).

Let $\delta := \operatorname{Min}\{\delta', M - M'\} > 0.$

Now, pick any $x, y \in \mathbb{R}$ with $|x - y| < \delta$, WLOG, assume $x \le y$,

There are five cases:

- (Case 1) Suppose $x, y \in [M', M]$, then by $(***), |f(x) f(y)| < \frac{\varepsilon}{2} < \varepsilon$.
- (Case 2) Suppose $x, y \le M'$, then by (**), we have

$$\left|f(x) - f(y)\right| \le \left|f(x) - L'\right| + \left|f(y) - L'\right| < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2} < \varepsilon.$$

(Case 3) Suppose $x, y \ge M$, then by (*), we have

$$\left|f(x) - f(y)\right| \le \left|f(x) - L\right| + \left|f(y) - L\right| < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2} < \varepsilon$$

- (Case 4) Suppose $x \le M' \le y$, then y < M, then using (***) and case 2, we have $|f(x) f(y)| \le |f(x) f(M')| + |f(M') f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.
- (Case 5) Suppose $x \le M \le y$, then x > M', then using (***) and case 3, we have $|f(x) f(y)| \le |f(x) f(M)| + |f(M) f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

In any cases, we must have $|f(x) - f(y)| < \varepsilon$.

Hence, f is uniformly continuous on \mathbb{R} .

(b) Fixed any $\varepsilon > 0$, note that f is continuous on [0, p],

hence f is uniformly continuous on [0, p] by Uniform Continuity Theorem.

Hence,
$$\exists \delta' > 0$$
, s.t. $\forall x, y \in [0, p]$ with $|x - y| < \delta'$, we have $|f(x) - f(y)| < \frac{c}{2}$. (*)

Let $\delta := Min\{\delta', p\} > 0$.

Pick any $x, y \in \mathbb{R}$ with $|x - y| < \delta$, WLOG, assume $x \le y$, by division algorithm,

 $\exists ! n, m \in \mathbb{Z}, s, t \in [0, p), s.t. x = np + s and y = mp + t.$

Note that $m \ge n$ and -p < t - s < p.

Note that $p \ge \delta > |x - y| = y - x = (m - n)p + (t - s) > (m - n - 1)p$.

Since p > 0, we have $0 \le m - n < 2$, since $m, n \in \mathbb{Z}$, m - n is either 0 or 1.

(Case 1) Suppose m - n = 0, that is m = n, so $|s - t| = |x - y| < \delta \le \delta'$, then by f is p-periodic and (*), we have

$$\left|f(x) - f(y)\right| = \left|f(np+s) - f(mp+s)\right| = \left|f(s) - f(t)\right| < \frac{\varepsilon}{2} < \varepsilon.$$

(Case 2) Suppose m - n = 1,

then $|p - s| = p - s \le t + p - s = |t + p - s| = |x - y| < \delta \le \delta'$, and $|t - 0| = t \le t + p - s = |t + p - s| = |x - y| < \delta \le \delta'$, then by *f* is *p*-periodic and (*), we have

$$\begin{split} \left| f(x) - f(y) \right| &\leq \left| f(np+s) + f(np+p) \right| + \left| f(np+p) + f(np+p+t) \right| \\ &= \left| f(s) - f(p) \right| + \left| f(0) - f(t) \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

In any cases, $|f(x) - f(y)| < \varepsilon$.

Hence, f is uniformly continuous on \mathbb{R} .

4.3 Maximum Minimum Value Theorem

4.3.1 Main Statement

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on [a, b] for some $a, b \in \mathbb{R}$ with a < b.

Then f attains an global maximum AND global minimum on [a, b].

That is, $\exists x^*, x_* \in [a, b]$, s.t. $f(x_*) \leq f(x) \leq f(x^*) \forall x \in [a, b]$.

4.3.2 Question

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function on \mathbb{R} .

(a) If $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = L \in \mathbb{R}$,

then f attains an global maximum OR global minimum on \mathbb{R} .

(b) With same assumption of (a),

could f attains both global maximum AND global minimum on \mathbb{R} ?

(c) Could the assumption of (a) be replaced by $\lim_{x \to +\infty} f(x) = L \in \mathbb{R}, \lim_{x \to -\infty} f(x) = L' \in \mathbb{R}$?

answer

Let $g : \mathbb{R} \to \mathbb{R}$ defined by $g(x) = f(x) - L \forall x \in \mathbb{R}$.

Note that g is continuous of \mathbb{R} with $\lim_{x \to +\infty} g(x) = \lim_{x \to -\infty} g(x) = 0$.

There are three cases:

(Case 1) Suppose $g(x) = 0 \forall x \in \mathbb{R}$,

that is g is a zero constant function,

then global maximum of g = global minimum of g = 0 (attains at everywhere).

Hence, global maximum of f = global minimum of f = L (attains at everywhere). (Case 2) Suppose g(c) > 0 for some $c \in \mathbb{R}$.

Take $\varepsilon_0 = \frac{g(c)}{2} > 0$, by $\lim_{x \to +\infty} g(x) = \lim_{x \to -\infty} g(x) = 0 \in \mathbb{R}$,

we can find M' < 0 and M > 0, such that $|g(x)| < \varepsilon_0 = \frac{g(c)}{2} \quad \forall x \ge M \text{ or } x \le M'$.

In particular,
$$g(x) \le \frac{g(c)}{2} \forall x \ge M \text{ or } x \le M'.$$
 (*)

Also, we know $c \in [M', M]$ since x = c does not satisfy $|g(x)| < \frac{g(c)}{2}$.

Note that g is continuous on [M', M], by Maximum Minimum Value Theorem, there exist some $x^* \in [M', M] \subset \mathbb{R}$, such that $g(x^*) \ge g(x) \forall x \in [M', M]$. (**) If $x \ge M$ or $x \le M'$, combine (*) and (**), we have

$$g(x) \le \frac{g(c)}{2} < g(c) \le g(x^*).$$

This means $g(x^*) \ge g(x) \ \forall x \in \mathbb{R}$,

that is $f(x^*) \ge f(x) \forall x \in \mathbb{R}$ by adding L on both sides.

Hence, f attain a global maximum at x^* .

(Case 3) Suppose g(c) < 0 for some $c \in \mathbb{R}$. Then -g(c) > 0 for that $c \in \mathbb{R}$, apply (case 2) on -g, there exist some $x_* \in \mathbb{R}$, such that $-g(x_*) \ge -g(x) \forall x \in \mathbb{R}$. That is, $g(x_*) \leq g(x) \forall x \in \mathbb{R}$ and hence, $f(x_*) \le f(x) \forall x \in \mathbb{R}$ by adding L on both sides.

However, these f may not attain both global minimum and maximum.

Consider the counter example: $f(x) = \frac{1}{1 + x^2} \forall x \in \mathbb{R}$.

Note that *f* is well-defined continuous function on \mathbb{R} (since $1 + x^2 > 0 \forall x \in \mathbb{R}$)

and $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0.$

Also, f attains a global maximum 1 at x = 0.

However, if f attained a global minimum at $x = c \in \mathbb{R}$,

WLOG, assume c > 0, note that f(c + 1) < f(c) which is a contradiction. Hence, f does NOT attain a global minimum.

If the limit of f as x tends to $\pm \infty$ is NOT same, the result may fail.

Consider the counter example:
$$f(x) = \begin{cases} 1 - \frac{1}{1 + x^2}, & \text{if } x \ge 0\\ \frac{1}{1 + x^2} - 1, & \text{if } x < 0 \end{cases}$$

Note that *f* is continuous on \mathbb{R} . (please check it at least for x = 0 yourself!) Also, $\lim_{x \to +\infty} f(x) = 1$ and $\lim_{x \to -\infty} f(x) = -1$.

By same skill above, consider f is increasing on \mathbb{R} , (I left it as exercise.)

f does NOT attain ANY global maximum and minimum.

4.4 Intermediate Value Theorem

4.4.1 Main Statement

Let $f : [a, b] \to \mathbb{R}$ be a continuous function on [a, b] for some $a, b \in \mathbb{R}$ with a < b. for any $k \in \mathbb{R}$ between f(a) and f(b), there exist $\xi \in [a, b]$, such that $f(\xi) = k$.

4.4.2 Question

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function on \mathbb{R} .

If $\lim_{x \to +\infty} f(x) = +\infty$ and $\lim_{x \to -\infty} f(x) = -\infty$, then f is surjective.

Answer

Pick any $y \in \mathbb{R}$,

by $\lim_{x \to +\infty} f(x) = +\infty$ and $\lim_{x \to -\infty} f(x) = -\infty$, we can find M' < 0 and M > 0,

such that $f(x) > y \forall x \ge M$ and $f(x) < y \forall x \le M'$.

In particular, f(M) > y > f(M').

By Intermediate Value Theorem, we can find $x_0 \in (M', M) \subset \mathbb{R}$ such that $y = f(x_0)$.

That is, $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, s.t. y = f(x)$.

Hence, $f : \mathbb{R} \to \mathbb{R}$ is surjective.